This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 23, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective
Folkerts et al., April 2020
Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective
Erik J. Folkerts, Greg G. Goss, Tamzin A. Blewett (2020). Reviews of Environmental Contamination and Toxicology, . 10.1007/398_2020_43
Abstract:
Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.
Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.
Maximum Removal Efficiency of Barium, Strontium, Radium, and Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for Beneficial Use in the Northern Appalachian Basin
McDevitt et al., April 2020
Maximum Removal Efficiency of Barium, Strontium, Radium, and Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for Beneficial Use in the Northern Appalachian Basin
Bonnie McDevitt, Michael Cavazza, Richard Beam, Eric Cavazza, William D. Burgos, Li Li, Nathaniel R. Warner (2020). Environmental Science & Technology, . 10.1021/acs.est.9b07072
Abstract:
Mixing of acid mine drainage (AMD) and hydraulic fracturing flowback fluids (HFFF) could represent an efficient management practice to simultaneously manage two complex energy wastewater streams while reducing freshwater resource consumption. AMD discharges offer generally high sulfate concentrations, especially from the bituminous coal region of Pennsylvania; unconventional Marcellus shale gas wells generally yield HFFF enriched in alkaline earth metals such as Sr and Ba, known to cause scaling issues in oil and gas (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with AMD-SO4, therefore removing them from solution. Four AMD discharges and HFFF from two unconventional Marcellus shale gas wells were characterized and mixed in batch reactors for 14 days. Ba could be completely removed from solution within 1 day of mixing in the form BaxSr1–xSO4 and no further significant precipitation occurred after 2 days. Total removal efficiencies of Ba + Sr + SO4 and the proportion of Ba and Sr in BaxSr1–xSO4 depended upon the Ba/Sr ratio in the initial HFFF. A geochemical model was calibrated from batch reactor data and used to identify optimum AMD–HFFF mixing ratios that maximize total removal efficiencies (Ba + Sr + SO4) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified prior to optimizing the treatment of HFFF with AMD.
Mixing of acid mine drainage (AMD) and hydraulic fracturing flowback fluids (HFFF) could represent an efficient management practice to simultaneously manage two complex energy wastewater streams while reducing freshwater resource consumption. AMD discharges offer generally high sulfate concentrations, especially from the bituminous coal region of Pennsylvania; unconventional Marcellus shale gas wells generally yield HFFF enriched in alkaline earth metals such as Sr and Ba, known to cause scaling issues in oil and gas (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with AMD-SO4, therefore removing them from solution. Four AMD discharges and HFFF from two unconventional Marcellus shale gas wells were characterized and mixed in batch reactors for 14 days. Ba could be completely removed from solution within 1 day of mixing in the form BaxSr1–xSO4 and no further significant precipitation occurred after 2 days. Total removal efficiencies of Ba + Sr + SO4 and the proportion of Ba and Sr in BaxSr1–xSO4 depended upon the Ba/Sr ratio in the initial HFFF. A geochemical model was calibrated from batch reactor data and used to identify optimum AMD–HFFF mixing ratios that maximize total removal efficiencies (Ba + Sr + SO4) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified prior to optimizing the treatment of HFFF with AMD.
Highly efficient bromide removal from shale gas produced water by un-activated peroxymonosulfate for controlling disinfection byproduct formation in impacted water supplies
Kuan Z Huang and Huichun Judy Zhang, March 2020
Highly efficient bromide removal from shale gas produced water by un-activated peroxymonosulfate for controlling disinfection byproduct formation in impacted water supplies
Kuan Z Huang and Huichun Judy Zhang (2020). Environmental Science & Technology, . 10.1021/acs.est.9b06825
Abstract:
Shale gas extraction processes generate a large amount of hypersaline wastewater, whose spills or discharges may significantly increase the bromide levels in downstream water supplies and result in the formation of brominated disinfection byproducts (DBPs) upon chlorination. Although a few studies have investigated selective bromide removal from produced water, the low removal efficiencies and complex system setups are not desirable. In this study, we examined a simple cost-effective approach for selective bromide removal from produced water relying on the oxidation by un-activated peroxymonosulfate (PMS). More than 95% of bromide was removed as Br2(g) in less than 10 min under weakly acidic conditions without significant formation of Cl2(g) even when the chloride concentration was more than two orders of magnitude higher. A kinetic model considering the involved reactions was then developed to describe the process well under various reaction conditions. The organic compounds in produced water neither noticeably lowered bromide removal efficiency nor reacted with the halogen species to form halogenated byproducts. The tests in batch and continuously-stirred tank reactor systems suggested that it was feasible to achieve both high bromide removal and neutral effluent pH such that further pH adjustment was not necessary before discharge. After the treatment, the effect of the produced water on DBP formation was largely eliminated.
Shale gas extraction processes generate a large amount of hypersaline wastewater, whose spills or discharges may significantly increase the bromide levels in downstream water supplies and result in the formation of brominated disinfection byproducts (DBPs) upon chlorination. Although a few studies have investigated selective bromide removal from produced water, the low removal efficiencies and complex system setups are not desirable. In this study, we examined a simple cost-effective approach for selective bromide removal from produced water relying on the oxidation by un-activated peroxymonosulfate (PMS). More than 95% of bromide was removed as Br2(g) in less than 10 min under weakly acidic conditions without significant formation of Cl2(g) even when the chloride concentration was more than two orders of magnitude higher. A kinetic model considering the involved reactions was then developed to describe the process well under various reaction conditions. The organic compounds in produced water neither noticeably lowered bromide removal efficiency nor reacted with the halogen species to form halogenated byproducts. The tests in batch and continuously-stirred tank reactor systems suggested that it was feasible to achieve both high bromide removal and neutral effluent pH such that further pH adjustment was not necessary before discharge. After the treatment, the effect of the produced water on DBP formation was largely eliminated.
The geochemistry of produced waters from the Tuscaloosa Marine Shale, USA
Anna A. Hoffmann and David M. Borrok, March 2020
The geochemistry of produced waters from the Tuscaloosa Marine Shale, USA
Anna A. Hoffmann and David M. Borrok (2020). Applied Geochemistry, 104568. 10.1016/j.apgeochem.2020.104568
Abstract:
Produced water is a byproduct of oil and gas production. The chemistry of produced water may provide information about the source of the fluid and its evolution, leading to an improved understanding of the hydrology of petroleum systems. In this study, samples from 19 wells from the Tuscaloosa Marine Shale (TMS) in Mississippi and Louisiana, USA were analyzed for their major and trace element compositions. Data obtained from produced waters from the TMS were compared to existing chemical data from produced waters collected from nearby hydrocarbon reservoir rocks within the Gulf Coast Basin. The results show that produced waters from the TMS are highly saline, with a mean concentration of 15.9 g/L of total dissolved solids. Comparison of the chemistry of produced water from the TMS to early flowback waters demonstrated a rapid shift from the more dilute fracturing fluid to the formation water endmember composition. Most of the trace metals showed a moderate to strong correlation with the overall salinity of the waters. Concentrations of Cu and V showed a moderate correlation with the amount of oil produced from the TMS wells, suggesting that these elements are strongly affiliated with the kerogen and subsequent dissolved (<0.45 μm) organic phases. Analysis of the volume of produced water compared to the volume of water used during hydraulic fracturing indicates that 15%–110% of the water volume used for fracking had been returned to the surface over the 2–5 year production period of the sampled wells. Chloride to bromide ratios suggest that the formation water in the TMS was derived from evaporated seawater. Comparison to historical data for produced waters in other formations in and around the Mississippi Salt Basin showed that waters in all the formations had a consistent origin (bitterns likely derived from the formation of the Louann salt). This implies that over geologic time periods fluids migrated through the TMS despite its low permeability present-day. The TMS also exhibited lower concentrations of dissolved transition metals such as Zn and Pb relative to those described in adjacent formations. This observation may suggest the presence of larger amounts of H2S, limiting the solubility of sulfide phases, in the shale unit relative to adjacent reservoir units.
Produced water is a byproduct of oil and gas production. The chemistry of produced water may provide information about the source of the fluid and its evolution, leading to an improved understanding of the hydrology of petroleum systems. In this study, samples from 19 wells from the Tuscaloosa Marine Shale (TMS) in Mississippi and Louisiana, USA were analyzed for their major and trace element compositions. Data obtained from produced waters from the TMS were compared to existing chemical data from produced waters collected from nearby hydrocarbon reservoir rocks within the Gulf Coast Basin. The results show that produced waters from the TMS are highly saline, with a mean concentration of 15.9 g/L of total dissolved solids. Comparison of the chemistry of produced water from the TMS to early flowback waters demonstrated a rapid shift from the more dilute fracturing fluid to the formation water endmember composition. Most of the trace metals showed a moderate to strong correlation with the overall salinity of the waters. Concentrations of Cu and V showed a moderate correlation with the amount of oil produced from the TMS wells, suggesting that these elements are strongly affiliated with the kerogen and subsequent dissolved (<0.45 μm) organic phases. Analysis of the volume of produced water compared to the volume of water used during hydraulic fracturing indicates that 15%–110% of the water volume used for fracking had been returned to the surface over the 2–5 year production period of the sampled wells. Chloride to bromide ratios suggest that the formation water in the TMS was derived from evaporated seawater. Comparison to historical data for produced waters in other formations in and around the Mississippi Salt Basin showed that waters in all the formations had a consistent origin (bitterns likely derived from the formation of the Louann salt). This implies that over geologic time periods fluids migrated through the TMS despite its low permeability present-day. The TMS also exhibited lower concentrations of dissolved transition metals such as Zn and Pb relative to those described in adjacent formations. This observation may suggest the presence of larger amounts of H2S, limiting the solubility of sulfide phases, in the shale unit relative to adjacent reservoir units.
Datasets associated with investigating the potential for beneficial reuse of produced water from oil and gas extraction outside of the energy sector.
Scanlon et al., March 2020
Datasets associated with investigating the potential for beneficial reuse of produced water from oil and gas extraction outside of the energy sector.
Bridget R. Scanlon, Robert C. Reedy, Pei Xu, Mark Engle, J. P. Nicot, David Yoxtheimer, Qian Yang, Svetlana Ikonnikova (2020). Data in Brief, 105406. 10.1016/j.dib.2020.105406
Abstract:
The data in this report are associated with https://doi.org/10.1016/j.scitotenv.2020.137085 and include data on water volumes and water quality related to the major unconventional oil and gas plays in the U.S.. The data include volumes of water co-produced with oil and gas production, county-level estimates of annual water use volumes by various sectors, including hydraulic fracturing water use, and the quality of produced water. The data on volumes of produced water and hydraulic fracturing water volumes were obtained from the IHS Enerdeq and FracFocus databases. Water use in other sectors were obtained from the U.S. Geological Survey water use database. Data on produced water quality were obtained from the USGS produced waters database.
The data in this report are associated with https://doi.org/10.1016/j.scitotenv.2020.137085 and include data on water volumes and water quality related to the major unconventional oil and gas plays in the U.S.. The data include volumes of water co-produced with oil and gas production, county-level estimates of annual water use volumes by various sectors, including hydraulic fracturing water use, and the quality of produced water. The data on volumes of produced water and hydraulic fracturing water volumes were obtained from the IHS Enerdeq and FracFocus databases. Water use in other sectors were obtained from the U.S. Geological Survey water use database. Data on produced water quality were obtained from the USGS produced waters database.
Barium Isotopes Track the Source of Dissolved Solids in Produced Water from the Unconventional Marcellus Shale Gas Play
Tieman et al., March 2020
Barium Isotopes Track the Source of Dissolved Solids in Produced Water from the Unconventional Marcellus Shale Gas Play
Zachary G. Tieman, Brian W. Stewart, Rosemary C Capo, Thai Phan, Christina Lopano, J. Alexandra Hakala (2020). Environmental Science & Technology, . 10.1021/acs.est.0c00102
Abstract:
Waters co-produced with hydrocarbons from unconventional oil and gas reservoirs such as the hydraulically fractured Marcellus Shale in the Appalachian Basin, USA, contain high levels of total dissolved solids (TDS), including Ba, which has been variously ascribed to drilling mud dissolution, interaction with pore fluids or shale exchangeable sites, or fluid migration through fractures. Here we show that Middle Devonian Marcellus Shale produced waters contain some of the heaviest Ba (high 138Ba/134Ba) measured to date (δ138Ba = +0.4‰ to +1.5‰ ±0.06‰), and are distinct from overlying Upper Devonian/Lower Mississippian reservoirs (δ138Ba = -0.8‰ to -0.5‰). Marcellus Shale produced water values do not overlap with drilling mud barite (δ138Ba ≈ 0.0‰), and are significantly offset from Ba reservoirs within the producing portion of the Marcellus Shale, including exchangeable sites and carbonate cement. Precipitation, desorption and diffusion processes are insufficient or in the wrong direction to produce the observed enrichments in heavy Ba. We hypothesize that the produced water is derived primarily from brines adjacent to and most likely below the Marcellus Shale, although such deep brines have not yet been obtained for Ba isotope analysis. Barium isotopes show promise for tracking formation waters and for understanding water-rock interaction under downhole conditions.
Waters co-produced with hydrocarbons from unconventional oil and gas reservoirs such as the hydraulically fractured Marcellus Shale in the Appalachian Basin, USA, contain high levels of total dissolved solids (TDS), including Ba, which has been variously ascribed to drilling mud dissolution, interaction with pore fluids or shale exchangeable sites, or fluid migration through fractures. Here we show that Middle Devonian Marcellus Shale produced waters contain some of the heaviest Ba (high 138Ba/134Ba) measured to date (δ138Ba = +0.4‰ to +1.5‰ ±0.06‰), and are distinct from overlying Upper Devonian/Lower Mississippian reservoirs (δ138Ba = -0.8‰ to -0.5‰). Marcellus Shale produced water values do not overlap with drilling mud barite (δ138Ba ≈ 0.0‰), and are significantly offset from Ba reservoirs within the producing portion of the Marcellus Shale, including exchangeable sites and carbonate cement. Precipitation, desorption and diffusion processes are insufficient or in the wrong direction to produce the observed enrichments in heavy Ba. We hypothesize that the produced water is derived primarily from brines adjacent to and most likely below the Marcellus Shale, although such deep brines have not yet been obtained for Ba isotope analysis. Barium isotopes show promise for tracking formation waters and for understanding water-rock interaction under downhole conditions.
Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of effects on adult health, behavior, and disease
Nagel et al., March 2020
Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of effects on adult health, behavior, and disease
S. C. Nagel, C. D. Kassotis, L. N. Vandenberg, B. P. Lawrence, J. Robert, V. D. Balise (2020). Molecular and Cellular Endocrinology, 110722. 10.1016/j.mce.2020.110722
Abstract:
Unconventional oil and natural gas extraction (UOG) combines directional drilling and hydraulic fracturing and produces billions of liters of wastewater per year. Herein, we review experimental studies that evaluated the potential endocrine-mediated health impacts of exposure to a mixture of 23 UOG chemicals commonly found in wastewater. The purpose of this manuscript is to synthesize and summarize a body of work using the same UOG-mix but with different model systems and physiological endpoints in multiple experiments. The studies reviewed were conducted in laboratory animals (mice or tadpoles) and human tissue culture cells. A key feature of the in vivo studies was the use of four environmentally relevant doses spanning three orders of magnitude ranging from concentrations found in surface and ground water in UOG dense areas to concentrations found in UOG wastewater. This UOG-mix exhibited potent antagonist activity for the estrogen, androgen, glucocorticoid, progesterone, and thyroid receptors in human tissue culture cells. Subsequently, pregnant mice were administered the UOG-mix in drinking water and offspring were examined in adulthood or to tadpoles. Developmental exposure profoundly impacted pituitary hormone concentrations, reduced sperm counts, altered folliculogenesis, and increased mammary gland ductal density and preneoplastic lesions in mice. It also altered energy expenditure, exploratory and risk-taking behavior, the immune system in three immune models in mice, and affected basal and antiviral immunity in frogs. These findings highlight the diverse systems affected by developmental EDC exposure and the need to examine human and animal health in UOG regions.
Unconventional oil and natural gas extraction (UOG) combines directional drilling and hydraulic fracturing and produces billions of liters of wastewater per year. Herein, we review experimental studies that evaluated the potential endocrine-mediated health impacts of exposure to a mixture of 23 UOG chemicals commonly found in wastewater. The purpose of this manuscript is to synthesize and summarize a body of work using the same UOG-mix but with different model systems and physiological endpoints in multiple experiments. The studies reviewed were conducted in laboratory animals (mice or tadpoles) and human tissue culture cells. A key feature of the in vivo studies was the use of four environmentally relevant doses spanning three orders of magnitude ranging from concentrations found in surface and ground water in UOG dense areas to concentrations found in UOG wastewater. This UOG-mix exhibited potent antagonist activity for the estrogen, androgen, glucocorticoid, progesterone, and thyroid receptors in human tissue culture cells. Subsequently, pregnant mice were administered the UOG-mix in drinking water and offspring were examined in adulthood or to tadpoles. Developmental exposure profoundly impacted pituitary hormone concentrations, reduced sperm counts, altered folliculogenesis, and increased mammary gland ductal density and preneoplastic lesions in mice. It also altered energy expenditure, exploratory and risk-taking behavior, the immune system in three immune models in mice, and affected basal and antiviral immunity in frogs. These findings highlight the diverse systems affected by developmental EDC exposure and the need to examine human and animal health in UOG regions.
Optimal Design of UF-RO Treatment System for Shale Gas Fracturing Flowback Wastewater
Zhang et al., March 2020
Optimal Design of UF-RO Treatment System for Shale Gas Fracturing Flowback Wastewater
Zhuang Zhang, Chun Deng, Chenlin Chang, Fan-xin Kong, Jui-Yuan Lee, Denny K. S. Ng, Xiao Feng (2020). Industrial & Engineering Chemistry Research, . 10.1021/acs.iecr.9b06546
Abstract:
Membrane-based desalination system under consideration for shale gas fracturing flowback wastewater treatment involves ultrafiltration (UF), reverse osmosis (RO) and storage tanks. The membrane unit (UF, RO) consists of online washing, operation and offline chemical washing sub-units. These sub-units operate in semi-continuous mode and have the similar characteristics as batch water-using processes. Based on their semi-continuous behaviors, the models of UF and RO sub-units are developed. The objective is to maximize the total water production ratio and profit while minimize storage tank capacity. Three nonlinear programming optimization models are developed for optimal design of UF-RO treatment system for shale gas fracturing flowback wastewater. Two scenarios – fixed schedule and fixed operating period for UF/RO treatment sub-units are investigated. Results show that with the increasing the operation duration of treatment sub-units, the water production ratio and profit will increase. The schedule of treatment sub-units has significant impact on the water-storage profiles, without adversely affecting the water production ratio. The proposed approach can guide the design of UF-RO desalination system.
Membrane-based desalination system under consideration for shale gas fracturing flowback wastewater treatment involves ultrafiltration (UF), reverse osmosis (RO) and storage tanks. The membrane unit (UF, RO) consists of online washing, operation and offline chemical washing sub-units. These sub-units operate in semi-continuous mode and have the similar characteristics as batch water-using processes. Based on their semi-continuous behaviors, the models of UF and RO sub-units are developed. The objective is to maximize the total water production ratio and profit while minimize storage tank capacity. Three nonlinear programming optimization models are developed for optimal design of UF-RO treatment system for shale gas fracturing flowback wastewater. Two scenarios – fixed schedule and fixed operating period for UF/RO treatment sub-units are investigated. Results show that with the increasing the operation duration of treatment sub-units, the water production ratio and profit will increase. The schedule of treatment sub-units has significant impact on the water-storage profiles, without adversely affecting the water production ratio. The proposed approach can guide the design of UF-RO desalination system.
Organic compounds in produced waters from the Bakken Formation and Three Forks Formation in the Williston Basin, North Dakota
Varonka et al., March 2020
Organic compounds in produced waters from the Bakken Formation and Three Forks Formation in the Williston Basin, North Dakota
Matthew S. Varonka, Tanya J. Gallegos, Anne L. Bates, Colin Doolan, William H. Orem (2020). Heliyon, e03590. 10.1016/j.heliyon.2020.e03590
Abstract:
The organic composition of produced waters (flowback and formation waters) from the middle member of the Bakken Formation and the Three Forks Formation in the Williston Basin, North Dakota were examined to aid in the remediation of surface contamination and help develop treatment methods for produced-water recycling. Twelve produced water samples were collected from the Bakken and Three Forks Formations and analyzed for non-purgeable dissolved organic carbon (NPDOC), acetate, and extractable hydrocarbons. NPDOC and acetate concentrations from sampled wells from ranged from 33-190 mg per liter (mg/L) and 16–40 mg/L, respectively. Concentrations of individual extractable hydrocarbon compounds ranged from less than 1 to greater than 400 μg per liter (μg/L), and included polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, glycol ethers, and cyclic ketones. While the limited number of samples, varying well production age, and lack of knowledge of on-going well treatments complicate conclusions, this report adds to the limited knowledge of organics in produced waters from the Bakken and Three Forks Formations.
The organic composition of produced waters (flowback and formation waters) from the middle member of the Bakken Formation and the Three Forks Formation in the Williston Basin, North Dakota were examined to aid in the remediation of surface contamination and help develop treatment methods for produced-water recycling. Twelve produced water samples were collected from the Bakken and Three Forks Formations and analyzed for non-purgeable dissolved organic carbon (NPDOC), acetate, and extractable hydrocarbons. NPDOC and acetate concentrations from sampled wells from ranged from 33-190 mg per liter (mg/L) and 16–40 mg/L, respectively. Concentrations of individual extractable hydrocarbon compounds ranged from less than 1 to greater than 400 μg per liter (μg/L), and included polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, glycol ethers, and cyclic ketones. While the limited number of samples, varying well production age, and lack of knowledge of on-going well treatments complicate conclusions, this report adds to the limited knowledge of organics in produced waters from the Bakken and Three Forks Formations.
Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media
Rodriguez et al., January 1970
Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media
Alfredo Zendejas Rodriguez, Huiyao Wang, Lei Hu, Yanyan Zhang, Pei Xu (1970). Water, 770. 10.3390/w12030770
Abstract:
Produced water is the largest volume of waste product generated during oil and natural gas exploration and production. The traditional method to dispose of produced water involves deep well injection, but this option is becoming more challenging due to high operational cost, limited disposal capacity, and more stringent regulations. Meanwhile, large volumes of freshwater are used for hydraulic fracturing. The goal of this study is to develop cost-effective technologies, and optimize system design and operation to treat highly saline produced water (120–140 g/L total dissolved solids) for hydraulic fracturing. Produced water was collected from a salt water disposal facility in the Permian Basin, New Mexico. Chemical coagulation (CC) using ferric chloride and aluminum sulfate as coagulants was compared with electrocoagulation (EC) with aluminum electrodes for removal of suspended contaminants. The effects of coagulant dose, current density, and hydraulic retention time during EC on turbidity removal were investigated. Experimental results showed that aluminum sulfate was more efficient and cost-effective than ferric chloride for removing turbidity from produced water. The optimal aluminum dose was achieved at operating current density of 6.60 mA/cm2 and 12 min contact time during EC treatment, which resulted in 74% removal of suspended solids and 53%–78% removal of total organic carbon (TOC). The energy requirement of EC was calculated 0.36 kWh/m3 of water treated. The total operating cost of EC was estimated $0.44/m3 of treated water, which is 1.7 or 1.2 times higher than CC using alum or ferric chloride as the coagulant, respectively. The EC operating cost was primarily associated with the consumption of aluminum electrode materials due to faradaic reactions and electrodes corrosions. EC has the advantage of shorter retention time, in situ production of coagulants, less sludge generation, and high mobility for onsite produced water treatment. The fine particles and other contaminants after coagulation were further treated in continuous-flow columns packed with different filter media, including agricultural waste products (pecan shell, walnut shell, and biochar), and new and spent granular activated carbon (GAC). Turbidity, TOC, metals, and electrical conductivity were monitored to evaluate the performance of the treatment system and the adsorption capacities of different media. Biochar and GAC showed the greatest removal of turbidity and TOC in produced water. These treatment technologies were demonstrated to be effective for the removal of suspended constituents and iron, and to produce a clean brine for onsite reuse, such as hydraulic fracturing.
Produced water is the largest volume of waste product generated during oil and natural gas exploration and production. The traditional method to dispose of produced water involves deep well injection, but this option is becoming more challenging due to high operational cost, limited disposal capacity, and more stringent regulations. Meanwhile, large volumes of freshwater are used for hydraulic fracturing. The goal of this study is to develop cost-effective technologies, and optimize system design and operation to treat highly saline produced water (120–140 g/L total dissolved solids) for hydraulic fracturing. Produced water was collected from a salt water disposal facility in the Permian Basin, New Mexico. Chemical coagulation (CC) using ferric chloride and aluminum sulfate as coagulants was compared with electrocoagulation (EC) with aluminum electrodes for removal of suspended contaminants. The effects of coagulant dose, current density, and hydraulic retention time during EC on turbidity removal were investigated. Experimental results showed that aluminum sulfate was more efficient and cost-effective than ferric chloride for removing turbidity from produced water. The optimal aluminum dose was achieved at operating current density of 6.60 mA/cm2 and 12 min contact time during EC treatment, which resulted in 74% removal of suspended solids and 53%–78% removal of total organic carbon (TOC). The energy requirement of EC was calculated 0.36 kWh/m3 of water treated. The total operating cost of EC was estimated $0.44/m3 of treated water, which is 1.7 or 1.2 times higher than CC using alum or ferric chloride as the coagulant, respectively. The EC operating cost was primarily associated with the consumption of aluminum electrode materials due to faradaic reactions and electrodes corrosions. EC has the advantage of shorter retention time, in situ production of coagulants, less sludge generation, and high mobility for onsite produced water treatment. The fine particles and other contaminants after coagulation were further treated in continuous-flow columns packed with different filter media, including agricultural waste products (pecan shell, walnut shell, and biochar), and new and spent granular activated carbon (GAC). Turbidity, TOC, metals, and electrical conductivity were monitored to evaluate the performance of the treatment system and the adsorption capacities of different media. Biochar and GAC showed the greatest removal of turbidity and TOC in produced water. These treatment technologies were demonstrated to be effective for the removal of suspended constituents and iron, and to produce a clean brine for onsite reuse, such as hydraulic fracturing.
Can we beneficially reuse produced water from oil and gas extraction in the U.S.?
Scanlon et al., February 2020
Can we beneficially reuse produced water from oil and gas extraction in the U.S.?
Bridget R. Scanlon, Robert C. Reedy, Pei Xu, Mark Engle, J. P. Nicot, David Yoxtheimer, Qian Yang, Svetlana Ikonnikova (2020). Science of The Total Environment, 137085. 10.1016/j.scitotenv.2020.137085
Abstract:
There is increasing interest in beneficial uses of large volumes of wastewater co-produced with oil and gas extraction (produced water, PW) because of water scarcity, potential subsurface disposal limitations, and regional linkages to induced seismicity. Here we quantified PW volumes relative to water demand in different sectors and PW quality relative to treatment and reuse options for the major U.S. shale oil and gas plays. PW volumes from these plays totaled ~600 billion liters (BL, 160 billion gallons, Bgal) in 2017. One year of PW is equal to ~60% of one day of freshwater use in the U.S. For these plays, the total irrigation demand exceeded PW volumes by ~5× whereas municipal demand exceeded PW by ~2×. If PW is reused for hydraulic fracturing (HF) within the energy sector, there would be no excess PW in about half of the plays because HF water demand exceeds PW volumes in those plays. PW quality can be highly saline with median total dissolved solids up to 255 g/L in the Bakken play, ~7× seawater. Intensive water treatment required for PW from most unconventional plays would further reduce PW volumes by at least 2×. Desalination would also result in large volumes of salt concentrates, equivalent to ~3000 Olympic swimming pools in the Permian Delaware Basin in 2017. While water demands outside the energy sector could accommodate PW volumes, much lower PW volumes relative to water demand in most regions would not substantially alleviate water scarcity. However, large projected PW volumes relative to HF water demand over the life of the play in the Permian Delaware Basin may provide a substantial new water source for beneficial use in the future. Large knowledge gaps in PW quality, lack of appropriate regulations, and economic factors currently preclude beneficial uses outside the energy sector in most regions.
There is increasing interest in beneficial uses of large volumes of wastewater co-produced with oil and gas extraction (produced water, PW) because of water scarcity, potential subsurface disposal limitations, and regional linkages to induced seismicity. Here we quantified PW volumes relative to water demand in different sectors and PW quality relative to treatment and reuse options for the major U.S. shale oil and gas plays. PW volumes from these plays totaled ~600 billion liters (BL, 160 billion gallons, Bgal) in 2017. One year of PW is equal to ~60% of one day of freshwater use in the U.S. For these plays, the total irrigation demand exceeded PW volumes by ~5× whereas municipal demand exceeded PW by ~2×. If PW is reused for hydraulic fracturing (HF) within the energy sector, there would be no excess PW in about half of the plays because HF water demand exceeds PW volumes in those plays. PW quality can be highly saline with median total dissolved solids up to 255 g/L in the Bakken play, ~7× seawater. Intensive water treatment required for PW from most unconventional plays would further reduce PW volumes by at least 2×. Desalination would also result in large volumes of salt concentrates, equivalent to ~3000 Olympic swimming pools in the Permian Delaware Basin in 2017. While water demands outside the energy sector could accommodate PW volumes, much lower PW volumes relative to water demand in most regions would not substantially alleviate water scarcity. However, large projected PW volumes relative to HF water demand over the life of the play in the Permian Delaware Basin may provide a substantial new water source for beneficial use in the future. Large knowledge gaps in PW quality, lack of appropriate regulations, and economic factors currently preclude beneficial uses outside the energy sector in most regions.
Effects of membrane property and hydrostatic pressure on the performance of gravity-driven membrane for shale gas flowback and produced water treatment
Li et al., February 2020
Effects of membrane property and hydrostatic pressure on the performance of gravity-driven membrane for shale gas flowback and produced water treatment
Jialin Li, Haiqing Chang, Peng Tang, Wei Shang, Qiping He, Baicang Liu (2020). Journal of Water Process Engineering, 101117. 10.1016/j.jwpe.2019.101117
Abstract:
Hydraulic fracturing of shale gas extraction generates numerous flowback and produced water (FPW), which will cause huge pollution if not properly treated. Gravity-driven membrane with economic advantages was applied as a pretreatment for desalinating this wastewater. The effects of membrane materials (polyvinylidene fluoride (PVDF) and polyvinylchloride (PVC)) with different mean pore sizes, porosities, contact angles, and pure water permeabilities and hydrostatic pressures (40 and 120 mbar) were investigated. The setups were operated for 90 days and the fluxes stabilized at about 0.87–1.00 L/(m2 h). PVDF membranes with higher price, had 6 % higher stable fluxes than PVC membranes, and the extracellular polymeric substances (EPS) contents in fouling layer of PVDF membranes were 10 %–20 % lower than those of PVC membranes. At higher pressures, the stable fluxes increased by only 8 %, but the total resistances increased by nearly 180 %, and there were more EPS, dissolved organic carbon, Na+, Ca2+, Mg2+, Cl− and NO3− on the fouling layer at 120 mbar. A denser cake layer was formed at a higher hydrostatic pressure, as observed by a scanning electron microscope and energy dispersive spectroscopy. Membrane properties and pressures had no significant effect on permeate quality (p > 0.05).
Hydraulic fracturing of shale gas extraction generates numerous flowback and produced water (FPW), which will cause huge pollution if not properly treated. Gravity-driven membrane with economic advantages was applied as a pretreatment for desalinating this wastewater. The effects of membrane materials (polyvinylidene fluoride (PVDF) and polyvinylchloride (PVC)) with different mean pore sizes, porosities, contact angles, and pure water permeabilities and hydrostatic pressures (40 and 120 mbar) were investigated. The setups were operated for 90 days and the fluxes stabilized at about 0.87–1.00 L/(m2 h). PVDF membranes with higher price, had 6 % higher stable fluxes than PVC membranes, and the extracellular polymeric substances (EPS) contents in fouling layer of PVDF membranes were 10 %–20 % lower than those of PVC membranes. At higher pressures, the stable fluxes increased by only 8 %, but the total resistances increased by nearly 180 %, and there were more EPS, dissolved organic carbon, Na+, Ca2+, Mg2+, Cl− and NO3− on the fouling layer at 120 mbar. A denser cake layer was formed at a higher hydrostatic pressure, as observed by a scanning electron microscope and energy dispersive spectroscopy. Membrane properties and pressures had no significant effect on permeate quality (p > 0.05).
Hydrochemistry of flowback water from Changning Shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality
Gao et al., January 2020
Hydrochemistry of flowback water from Changning Shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality
Jinliang Gao, Caineng Zou, Wei Li, Yunyan Ni, Fengrong Liao, Limiao Yao, Jianli Sui, Avner Vengosh (2020). Science of The Total Environment, 136591. 10.1016/j.scitotenv.2020.136591
Abstract:
The worldwide expansion of shale gas production and increased use of hydraulic fracturing have raised public concerns about safety and risks of groundwater resources in shale gas extraction areas. China has the largest shale gas resources in the world, most of which are located in the Sichuan Basin. Shale gas extraction in the Sichuan Basin has been increasing rapidly in recent years. However, the potential impact on shallow groundwater quality has not yet been systematically investigated. In order to evaluate the possible impact of shale gas extraction on groundwater quality, we present, for the first time, the hydrochemistry and Sr isotopic data of shallow groundwater, as well as flowback and produced water (FP water) in the Changning shale gas field in Sichuan Basin, one of the major shale gas fields in China. The Changning FP water is characterized by high salinity (TDS of 13,100–53,500 mg/L), Br/Cl (2.76 × 10−3) and 87Sr/86Sr (0.71849), which are distinguished from the produced waters from nearby conventional gas fields with higher Br/Cl (4.5 × 10−3) and lower 87Sr/86Sr (0.70830–0.71235). The shallow groundwater samples were collected from a Triassic karst aquifer in both active and nonactive shale gas extraction areas. They are dominated by low salinity (TDS of 145–1100 mg/L), Ca-HCO3 and Ca-Mg-HCO3 types water, which are common in carbonate karst aquifers. No statistical difference of the groundwater quality was observed between samples collected in active versus nonactive shale gas extraction areas. Out of 66 analyzed groundwater, three groundwater samples showed relatively higher salinity above the background level, with low 87Sr/86Sr (0.70824–0.7110) and Br/Cl (0.5–1.8 × 10−3) ratios relatively to FP water, excluding the possibility of contamination from FP water. None of the groundwater samples had detected volatile organic compounds (VOCs). The integration of geochemical and statistical analysis shows no direct evidence of groundwater contamination caused by shale gas development.
The worldwide expansion of shale gas production and increased use of hydraulic fracturing have raised public concerns about safety and risks of groundwater resources in shale gas extraction areas. China has the largest shale gas resources in the world, most of which are located in the Sichuan Basin. Shale gas extraction in the Sichuan Basin has been increasing rapidly in recent years. However, the potential impact on shallow groundwater quality has not yet been systematically investigated. In order to evaluate the possible impact of shale gas extraction on groundwater quality, we present, for the first time, the hydrochemistry and Sr isotopic data of shallow groundwater, as well as flowback and produced water (FP water) in the Changning shale gas field in Sichuan Basin, one of the major shale gas fields in China. The Changning FP water is characterized by high salinity (TDS of 13,100–53,500 mg/L), Br/Cl (2.76 × 10−3) and 87Sr/86Sr (0.71849), which are distinguished from the produced waters from nearby conventional gas fields with higher Br/Cl (4.5 × 10−3) and lower 87Sr/86Sr (0.70830–0.71235). The shallow groundwater samples were collected from a Triassic karst aquifer in both active and nonactive shale gas extraction areas. They are dominated by low salinity (TDS of 145–1100 mg/L), Ca-HCO3 and Ca-Mg-HCO3 types water, which are common in carbonate karst aquifers. No statistical difference of the groundwater quality was observed between samples collected in active versus nonactive shale gas extraction areas. Out of 66 analyzed groundwater, three groundwater samples showed relatively higher salinity above the background level, with low 87Sr/86Sr (0.70824–0.7110) and Br/Cl (0.5–1.8 × 10−3) ratios relatively to FP water, excluding the possibility of contamination from FP water. None of the groundwater samples had detected volatile organic compounds (VOCs). The integration of geochemical and statistical analysis shows no direct evidence of groundwater contamination caused by shale gas development.
An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction
Danforth et al., January 2020
An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction
Cloelle Danforth, Weihsueh A. Chiu, Ivan Rusyn, Kim Schultz, Ashley Bolden, Carol Kwiatkowski, Elena Craft (2020). Environment International, 105280. 10.1016/j.envint.2019.105280
Abstract:
In the United States, onshore oil and gas extraction operations generate an estimated 900 billion gallons of produced water annually, making it the largest waste stream associated with upstream development of petroleum hydrocarbons. Management and disposal practices of produced water vary from deep well injection to reuse of produced water in agricultural settings. However, there is relatively little information with regard to the chemical or toxicological characteristics of produced water. A comprehensive literature review was performed, screening nearly 16,000 published articles, and identifying 129 papers that included data on chemicals detected in produced water. Searches for information on the potential ecotoxicological or mammalian toxicity of these chemicals revealed that the majority (56%) of these compounds have not been a subject of safety evaluation or mechanistic toxicology studies and 86% lack data to be used to complete a risk assessment, which underscores the lack of toxicological information for the majority of chemical constituents in produced water. The objective of this study was to develop a framework to identify potential constituents of concern in produced water, based on available and predicted toxicological hazard data, to prioritize these chemicals for monitoring, treatment, and research. In order to integrate available evidence to address gaps in toxicological hazard on the chemicals in produced water, we have catalogued available information from ecological toxicity studies, toxicity screening databases, and predicted toxicity values. A Toxicological Priority Index (ToxPi) approach was applied to integrate these various data sources. This research will inform stakeholders and decision-makers on the potential hazards in produced water. In addition, this work presents a method to prioritize compounds that, based on hazard and potential exposure, may be considered during various produced water reuse strategies to reduce possible human health risks and environmental impacts.
In the United States, onshore oil and gas extraction operations generate an estimated 900 billion gallons of produced water annually, making it the largest waste stream associated with upstream development of petroleum hydrocarbons. Management and disposal practices of produced water vary from deep well injection to reuse of produced water in agricultural settings. However, there is relatively little information with regard to the chemical or toxicological characteristics of produced water. A comprehensive literature review was performed, screening nearly 16,000 published articles, and identifying 129 papers that included data on chemicals detected in produced water. Searches for information on the potential ecotoxicological or mammalian toxicity of these chemicals revealed that the majority (56%) of these compounds have not been a subject of safety evaluation or mechanistic toxicology studies and 86% lack data to be used to complete a risk assessment, which underscores the lack of toxicological information for the majority of chemical constituents in produced water. The objective of this study was to develop a framework to identify potential constituents of concern in produced water, based on available and predicted toxicological hazard data, to prioritize these chemicals for monitoring, treatment, and research. In order to integrate available evidence to address gaps in toxicological hazard on the chemicals in produced water, we have catalogued available information from ecological toxicity studies, toxicity screening databases, and predicted toxicity values. A Toxicological Priority Index (ToxPi) approach was applied to integrate these various data sources. This research will inform stakeholders and decision-makers on the potential hazards in produced water. In addition, this work presents a method to prioritize compounds that, based on hazard and potential exposure, may be considered during various produced water reuse strategies to reduce possible human health risks and environmental impacts.
Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water
Zhong et al., November 2024
Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water
Cheng Zhong, Camilla L. Nesbø, Greg G. Goss, Brian D. Lanoil, Daniel S. Alessi (2024). FEMS Microbiology Ecology, . 10.1093/femsec/fiaa068
Abstract:
Abstract. The response of microbial communities to releases of hydraulic fracturing flowback and produced water (PW) may influence ecosystem functionalities. H
Abstract. The response of microbial communities to releases of hydraulic fracturing flowback and produced water (PW) may influence ecosystem functionalities. H
A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment
Andrew J. Sumner and Desiree L. Plata, November 2024
A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment
Andrew J. Sumner and Desiree L. Plata (2024). Environmental Science: Processes & Impacts, . 10.1039/C9EM00505F
Abstract:
Spatial variability of produced-water quality and alternative-source water analysis applied to the Permian Basin, USA
Chaudhary et al., November 2019
Spatial variability of produced-water quality and alternative-source water analysis applied to the Permian Basin, USA
Binod K. Chaudhary, Robert Sabie, Mark A. Engle, Pei Xu, Spencer Willman, Kenneth C. Carroll (2019). Hydrogeology Journal, . 10.1007/s10040-019-02054-4
Abstract:
Interest in both environmental impact and potential beneficial uses of produced water (PW) has increased with growth in unconventional oil and gas production, especially in semi-arid regions, e.g. the Permian Basin, the most productive tight-oil region in the USA. Characterization of PW compositional variability is needed to evaluate environmental impact, treatment, and reuse potential. Geochemical variability of PW from Guadalupian (Middle Permian) to Ordovician formations was statistically and geostatistically evaluated in the western half of the Permian Basin (Delaware Basin, Central Basin Platform, and Northwest Shelf) using the US Geological Survey’s Produced Waters Geochemical Database and the New Mexico Water and Infrastructure Data System. Mean total dissolved solids (TDS) of PW increased with depth in the Delaware Basin and Central Basin Platform to the Delaware and Wolfcamp formations (Guadalupian age). Mean TDS decreased with further increases in depth. In contrast, the mean salinity of PW was significantly higher within the shallow, younger formations (largest mean TDS in the Artesia Formation); TDS decreased with depth below Guadalupian age formations in the Northwest Shelf. Kriged contour maps of TDS and major ions illustrated spatial variability across the three geo-structural regions as a function of depth. The occurrence of meteoric waters in upper and deeper formations across the three regions was significant, and was attributed to Laramide Orogeny and Basin and Range extension uplifting and tilting effects and recent water flooding. These results quantify PW composition variability, and suggest that upon treatment, PW would support some uses such as onsite reuse and mining.
Interest in both environmental impact and potential beneficial uses of produced water (PW) has increased with growth in unconventional oil and gas production, especially in semi-arid regions, e.g. the Permian Basin, the most productive tight-oil region in the USA. Characterization of PW compositional variability is needed to evaluate environmental impact, treatment, and reuse potential. Geochemical variability of PW from Guadalupian (Middle Permian) to Ordovician formations was statistically and geostatistically evaluated in the western half of the Permian Basin (Delaware Basin, Central Basin Platform, and Northwest Shelf) using the US Geological Survey’s Produced Waters Geochemical Database and the New Mexico Water and Infrastructure Data System. Mean total dissolved solids (TDS) of PW increased with depth in the Delaware Basin and Central Basin Platform to the Delaware and Wolfcamp formations (Guadalupian age). Mean TDS decreased with further increases in depth. In contrast, the mean salinity of PW was significantly higher within the shallow, younger formations (largest mean TDS in the Artesia Formation); TDS decreased with depth below Guadalupian age formations in the Northwest Shelf. Kriged contour maps of TDS and major ions illustrated spatial variability across the three geo-structural regions as a function of depth. The occurrence of meteoric waters in upper and deeper formations across the three regions was significant, and was attributed to Laramide Orogeny and Basin and Range extension uplifting and tilting effects and recent water flooding. These results quantify PW composition variability, and suggest that upon treatment, PW would support some uses such as onsite reuse and mining.
Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States
Wang et al., November 2019
Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States
Huan Wang, Lu Lu, Xi Chen, Yanhong Bian, Zhiyong Jason Ren (2019). Water Research, 114942. 10.1016/j.watres.2019.114942
Abstract:
Limited understanding of wastewater streams produced from shale oil and gas wells impedes best practices of wastewater treatment and reuse. This study provides a comprehensive and comparative analysis of flowback and produced water from three major and newly developed shale plays (the Bakken shale, North Dakota; the Barnett shale, Texas; and the Denver-Julesburg (DJ) basin, Colorado) in central and western United States. Geochemical features that included more than 10 water quality parameters, dissolved organic matter, as well as microbial community structures were characterized and compared. Results showed that wastewater from Bakken and Barnett shales has extremely high salinity (∼295 g/L total dissolved solids (TDS)) and low organic concentration (80–252 mg/L dissolved organic carbon (DOC)). In contrast, DJ basin showed an opposite trend with low TDS (∼30 g/L) and high organic content (644 mg/L DOC). Excitation-emission matrix (EEM) fluorescence spectra demonstrated that more humic acid and fluvic acid-like organics with higher aromaticity existed in Bakken wastewater than that in Barnett and DJ basin. Microbial communities of Bakken samples were dominated by Fe (III)-reducing bacteria Geobacter, lactic acid bacteria Lactococcus and Enterococcus, and Bradyrhizobium, while DJ basin water showed higher abundance of Rhodococcus, Thermovirga, and sulfate reducing bacteria Thermotoga and Petrotoga. All these bacteria are capable of hydrocarbon degradation. Hydrogenotrophic methanogens dominated the archaeal communities in all samples.
Limited understanding of wastewater streams produced from shale oil and gas wells impedes best practices of wastewater treatment and reuse. This study provides a comprehensive and comparative analysis of flowback and produced water from three major and newly developed shale plays (the Bakken shale, North Dakota; the Barnett shale, Texas; and the Denver-Julesburg (DJ) basin, Colorado) in central and western United States. Geochemical features that included more than 10 water quality parameters, dissolved organic matter, as well as microbial community structures were characterized and compared. Results showed that wastewater from Bakken and Barnett shales has extremely high salinity (∼295 g/L total dissolved solids (TDS)) and low organic concentration (80–252 mg/L dissolved organic carbon (DOC)). In contrast, DJ basin showed an opposite trend with low TDS (∼30 g/L) and high organic content (644 mg/L DOC). Excitation-emission matrix (EEM) fluorescence spectra demonstrated that more humic acid and fluvic acid-like organics with higher aromaticity existed in Bakken wastewater than that in Barnett and DJ basin. Microbial communities of Bakken samples were dominated by Fe (III)-reducing bacteria Geobacter, lactic acid bacteria Lactococcus and Enterococcus, and Bradyrhizobium, while DJ basin water showed higher abundance of Rhodococcus, Thermovirga, and sulfate reducing bacteria Thermotoga and Petrotoga. All these bacteria are capable of hydrocarbon degradation. Hydrogenotrophic methanogens dominated the archaeal communities in all samples.
Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir
Osselin et al., October 2019
Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir
F. Osselin, S. Saad, M. Nightingale, G. Hearn, A-M. Desaulty, E. C. Gaucher, C. R. Clarkson, W. Kloppmann, B. Mayer (2019). Science of The Total Environment, 1389-1400. 10.1016/j.scitotenv.2019.07.066
Abstract:
Although multistage hydraulic fracturing is routinely performed for the extraction of hydrocarbon resources from low permeability reservoirs, the downhole geochemical processes linked to the interaction of fracturing fluids with formation brine and reservoir mineralogy remain poorly understood. We present a geochemical dataset of flowback and produced water samples from a hydraulically fractured reservoir in the Montney Formation, Canada, analyzed for major and trace elements and stable isotopes. The dataset consists in 25 samples of flowback and produced waters from a single well, as well as produced water samples from 16 other different producing wells collected in the same field. Additionally, persulfate breaker samples as well as anhydrite and pyrite from cores were also analyzed. The objectives of this study were to understand the geochemical interactions between formation and fracturing fluids and their consequences in the context of tight gas exploitation. The analysis of this dataset allowed for a comprehensive understanding of the coupled downhole geochemical processes, linked in particular to the action of the oxidative breaker. Flowback fluid chemistries were determined to be the result of mixing of formation brine with the hydraulic fracturing fluids as well as coupled geochemical reactions with the reservoir rock such as dissolution of anhydrite and dolomite; pyrite and organic matter oxidation; and calcite, barite, celestite, iron oxides and possibly calcium sulfate scaling. In particular, excess sulfate in the collected samples was found to be mainly derived from anhydrite dissolution, and not from persulfate breaker or pyrite oxidation. The release of heavy metals from the oxidation activity of the breaker was detectable but concentrations of heavy metals in produced fluids remained below the World Health Organization guidelines for drinking water and are therefore of no concern. This is due in part to the co-precipitation of heavy metals with iron oxides and possibly sulfate minerals.
Although multistage hydraulic fracturing is routinely performed for the extraction of hydrocarbon resources from low permeability reservoirs, the downhole geochemical processes linked to the interaction of fracturing fluids with formation brine and reservoir mineralogy remain poorly understood. We present a geochemical dataset of flowback and produced water samples from a hydraulically fractured reservoir in the Montney Formation, Canada, analyzed for major and trace elements and stable isotopes. The dataset consists in 25 samples of flowback and produced waters from a single well, as well as produced water samples from 16 other different producing wells collected in the same field. Additionally, persulfate breaker samples as well as anhydrite and pyrite from cores were also analyzed. The objectives of this study were to understand the geochemical interactions between formation and fracturing fluids and their consequences in the context of tight gas exploitation. The analysis of this dataset allowed for a comprehensive understanding of the coupled downhole geochemical processes, linked in particular to the action of the oxidative breaker. Flowback fluid chemistries were determined to be the result of mixing of formation brine with the hydraulic fracturing fluids as well as coupled geochemical reactions with the reservoir rock such as dissolution of anhydrite and dolomite; pyrite and organic matter oxidation; and calcite, barite, celestite, iron oxides and possibly calcium sulfate scaling. In particular, excess sulfate in the collected samples was found to be mainly derived from anhydrite dissolution, and not from persulfate breaker or pyrite oxidation. The release of heavy metals from the oxidation activity of the breaker was detectable but concentrations of heavy metals in produced fluids remained below the World Health Organization guidelines for drinking water and are therefore of no concern. This is due in part to the co-precipitation of heavy metals with iron oxides and possibly sulfate minerals.
Nontarget profiling of organic compounds in a temporal series of hydraulic fracturing flowback and produced waters
Sun et al., October 2019
Nontarget profiling of organic compounds in a temporal series of hydraulic fracturing flowback and produced waters
Chenxing Sun, Yifeng Zhang, Daniel S. Alessi, Jonathan W. Martin (2019). Environment International, 104944. 10.1016/j.envint.2019.104944
Abstract:
Hydraulic fracturing (HF) flowback and produced water (FPW) can be toxic to aquatic life but its chemical content is largely unknown, variable and complex. Seven FPW samples were collected from a HF operation in the Duvernay Formation (Alberta, Canada) over 30 days of flowback and characterized by a nontarget workflow based on high performance liquid chromatography - high resolution mass spectrometry (HRMS). A modified Kendrick mass defect plot and MS/MS spectral interpretation revealed seven series of homologues composed of ethylene oxide (i.e. -CH2CH2O-), among which a series of aldehydes was proposed as degradation products of polyethylene glycols, and two series of alkyl ethoxylate carboxylates could be proprietary HF additives. Many other ions were confidently assigned a formula by accurate mass measurement and were subsequently prioritized for identification by matching to records in ChemSpider and the US EPA's CompTox Chemistry Dashboard. Quaternary ammonium compounds, amine oxides, organophosphorous compounds, phthalate diesters and hydroxyquinoline were identified with high confidence by MS/MS spectra (Level 3), matching to reference spectra in MassBank (Level 2) or to authentic standards (Level 1). Temporal trends showed that most of the compounds declined in abundance over the first nine days of flowback, except for phthalate diesters and hydroxyquinoline that were still observed on Day 30 and had disappearance half-lives of 61 and 91 days, respectively. All the compounds followed first-order disappearance kinetics in flowback, except for polyoxygenated acids which followed second-order kinetics. This analysis and the workflow, based largely on public on-line databases, enabled profiling of complex organic compounds in HF-FPW, and will likely be useful for further understanding the toxicity and chemical fate of HF-FPW.
Hydraulic fracturing (HF) flowback and produced water (FPW) can be toxic to aquatic life but its chemical content is largely unknown, variable and complex. Seven FPW samples were collected from a HF operation in the Duvernay Formation (Alberta, Canada) over 30 days of flowback and characterized by a nontarget workflow based on high performance liquid chromatography - high resolution mass spectrometry (HRMS). A modified Kendrick mass defect plot and MS/MS spectral interpretation revealed seven series of homologues composed of ethylene oxide (i.e. -CH2CH2O-), among which a series of aldehydes was proposed as degradation products of polyethylene glycols, and two series of alkyl ethoxylate carboxylates could be proprietary HF additives. Many other ions were confidently assigned a formula by accurate mass measurement and were subsequently prioritized for identification by matching to records in ChemSpider and the US EPA's CompTox Chemistry Dashboard. Quaternary ammonium compounds, amine oxides, organophosphorous compounds, phthalate diesters and hydroxyquinoline were identified with high confidence by MS/MS spectra (Level 3), matching to reference spectra in MassBank (Level 2) or to authentic standards (Level 1). Temporal trends showed that most of the compounds declined in abundance over the first nine days of flowback, except for phthalate diesters and hydroxyquinoline that were still observed on Day 30 and had disappearance half-lives of 61 and 91 days, respectively. All the compounds followed first-order disappearance kinetics in flowback, except for polyoxygenated acids which followed second-order kinetics. This analysis and the workflow, based largely on public on-line databases, enabled profiling of complex organic compounds in HF-FPW, and will likely be useful for further understanding the toxicity and chemical fate of HF-FPW.
Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water
Almaraz et al., September 2019
Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water
Nohemi Almaraz, Julia Regnery, Gary F. Vanzin, Stephanie M. Riley, Danika C. Ahoor, Tzahi Y. Cath (2019). Science of The Total Environment, 134202. 10.1016/j.scitotenv.2019.134202
Abstract:
Oil and gas (O&G) production in the United States is expected to grow at a substantial rate over the coming decades. Environmental sustainability related to water consumption during O&G extraction can be addressed through treatment and reuse of water returning to the surface after well completion. Water quality is an important factor in reuse applications, and specific treatment technologies must be utilized to remove different contaminants. Among others, biological active filtration can remove dissolved organic matter as a pre-treatment for surface discharge or to facilitate reuse in such applications as hydraulic fracturing, dust suppression, road stabilization, and crop irrigation. Yet, the formation of byproducts during treatment of O&G wastewater remains a concern when evaluating reuse applications. In this study, we investigated the previously unnoticed biotic formation of iodinated organic compounds (IOCs) such as triiodomethane during biological treatment of O&G wastewater for beneficial reuse. Iodide and several IOCs were quantified in O&G produced water before and after treatment in biological active filters filled with different media types over 13 weeks of operation. While iodide and total IOCs were measured at concentrations <53 mg/L and 147 μg/L, respectively, before biological treatment, total IOCs were measured at concentrations close to 4 mg/L after biological treatment. Triiodomethane was the IOC that was predominantly present. IOC formation had a negative strong correlation (r = −0.7 to −0.8, p < 0.05, n = 9) with iodide concentration in the treated O&G wastewater, indicating that iodide introduced to the biological active filter system was utilized in various reactions, including biologically mediated halogenation of organic matter. Additionally, iodide-oxidizing bacteria augmented in the treated produced water pointed towards potential negative environmental implications when releasing biologically treated halide-rich wastewater effluents to the aquatic environment.
Oil and gas (O&G) production in the United States is expected to grow at a substantial rate over the coming decades. Environmental sustainability related to water consumption during O&G extraction can be addressed through treatment and reuse of water returning to the surface after well completion. Water quality is an important factor in reuse applications, and specific treatment technologies must be utilized to remove different contaminants. Among others, biological active filtration can remove dissolved organic matter as a pre-treatment for surface discharge or to facilitate reuse in such applications as hydraulic fracturing, dust suppression, road stabilization, and crop irrigation. Yet, the formation of byproducts during treatment of O&G wastewater remains a concern when evaluating reuse applications. In this study, we investigated the previously unnoticed biotic formation of iodinated organic compounds (IOCs) such as triiodomethane during biological treatment of O&G wastewater for beneficial reuse. Iodide and several IOCs were quantified in O&G produced water before and after treatment in biological active filters filled with different media types over 13 weeks of operation. While iodide and total IOCs were measured at concentrations <53 mg/L and 147 μg/L, respectively, before biological treatment, total IOCs were measured at concentrations close to 4 mg/L after biological treatment. Triiodomethane was the IOC that was predominantly present. IOC formation had a negative strong correlation (r = −0.7 to −0.8, p < 0.05, n = 9) with iodide concentration in the treated O&G wastewater, indicating that iodide introduced to the biological active filter system was utilized in various reactions, including biologically mediated halogenation of organic matter. Additionally, iodide-oxidizing bacteria augmented in the treated produced water pointed towards potential negative environmental implications when releasing biologically treated halide-rich wastewater effluents to the aquatic environment.
Influence of High Total Dissolved Solids Concentration and Ionic Composition on γ Spectroscopy Radium Measurements of Oil and Gas-Produced Water
Ajemigbitse et al., August 2019
Influence of High Total Dissolved Solids Concentration and Ionic Composition on γ Spectroscopy Radium Measurements of Oil and Gas-Produced Water
Moses A. Ajemigbitse, Travis L. Tasker, Fred S. Cannon, Nathaniel R. Warner (2019). Environmental Science & Technology, . 10.1021/acs.est.9b03035
Abstract:
Radium measurements in high total dissolved solids (TDS) fluids from oil and gas extraction can have unfavorable precision and accuracy, in part because these high-level impurities incur attenuation. γ spectroscopy is often recommended for determining radium activities in these fluids, but even this method can produce a range of reported activities for the same sample. To reduce measurement duration and to maintain or improve accuracy, we propose a method to rapidly assess both 226Ra and 228Ra and to account for the self-attenuation of γ rays in high-TDS oil and gas fluids when they are monitored by a well detector. In this work, comparisons between a NaCl-only and a multi-cation-chloride synthetic brine spiked with known amounts of 226Ra and 228Ra indicated that both the TDS concentration and the type of TDS (i.e., Na only vs Na–Mg–Ba–Ca–Sr) influenced self-attenuation in well-detector γ spectroscopy, thus highlighting the need to correct for this TDS-influenced self-attenuation. Radium activities can be underestimated if the correction is not applied. For instance, 226Ra activities could be ∼40% lower in a sample when measured directly at the 186 keV energy level if the attenuation of the high TDS of the fluid is not considered. We also showed that using a NaCl-only brine to match the matrix of high-TDS oil and gas brines is inadequate to produce accurate measurements, rather, the full set of cations should be included.
Radium measurements in high total dissolved solids (TDS) fluids from oil and gas extraction can have unfavorable precision and accuracy, in part because these high-level impurities incur attenuation. γ spectroscopy is often recommended for determining radium activities in these fluids, but even this method can produce a range of reported activities for the same sample. To reduce measurement duration and to maintain or improve accuracy, we propose a method to rapidly assess both 226Ra and 228Ra and to account for the self-attenuation of γ rays in high-TDS oil and gas fluids when they are monitored by a well detector. In this work, comparisons between a NaCl-only and a multi-cation-chloride synthetic brine spiked with known amounts of 226Ra and 228Ra indicated that both the TDS concentration and the type of TDS (i.e., Na only vs Na–Mg–Ba–Ca–Sr) influenced self-attenuation in well-detector γ spectroscopy, thus highlighting the need to correct for this TDS-influenced self-attenuation. Radium activities can be underestimated if the correction is not applied. For instance, 226Ra activities could be ∼40% lower in a sample when measured directly at the 186 keV energy level if the attenuation of the high TDS of the fluid is not considered. We also showed that using a NaCl-only brine to match the matrix of high-TDS oil and gas brines is inadequate to produce accurate measurements, rather, the full set of cations should be included.
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation
Liden et al., January 1970
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation
Tiffany Liden, Zacariah L. Hildenbrand, Kevin A. Schug (1970). Water, 1437. 10.3390/w11071437
Abstract:
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Shedding light on the effects of hydraulic fracturing flowback and produced water on phototactic behavior in Daphnia magna
Delompré et al., June 2019
Shedding light on the effects of hydraulic fracturing flowback and produced water on phototactic behavior in Daphnia magna
P. L. M. Delompré, T. A. Blewett, G. G. Goss, C. N. Glover (2019). Ecotoxicology and Environmental Safety, 315-323. 10.1016/j.ecoenv.2019.03.006
Abstract:
The effluent produced during hydraulic fracturing (i.e. flowback and produced water; FPW), is a complex hyper-saline solution that is known to negatively impact the survival and the fitness of the water flea Daphnia magna, but to date effects on behavior are unstudied. In the current study, the effects of FPW on phototactic behavior of D. magna were examined. Exposure of naïve animals to FPW resulted in a dose-dependent increase in the speed of appearance of daphnids in the illuminated zone of the test apparatus (i.e. a faster positive phototaxis response). A similar dose-dependent response was observed in a test solution where the salt content of FPW was recreated in the absence of other components, suggesting that the effect was largely driven by salinity. The effect of FPW was significant when the raw FPW sample was diluted to 20% of its initial strength, while the effect of salt-matched solution was significant at a 10% dilution. A distinct effect was observed following FPW pre-exposure. After a 24 h pre-exposure to 1.5% FPW, Daphnia displayed a significantly inhibited positive phototaxis response when examined in control water, relative to control animals that were not pre-exposed to FPW. This effect was not observed in salinity pre-exposed animals, however these daphnids displayed a significantly reduced phototactic response when tested in saline waters, indicating a loss of the positive phototaxis seen in naïve organisms. These data indicate that FPW can induce perturbations in the behavior of aquatic invertebrates, an effect that may influence processes such as feeding and predation rates.
The effluent produced during hydraulic fracturing (i.e. flowback and produced water; FPW), is a complex hyper-saline solution that is known to negatively impact the survival and the fitness of the water flea Daphnia magna, but to date effects on behavior are unstudied. In the current study, the effects of FPW on phototactic behavior of D. magna were examined. Exposure of naïve animals to FPW resulted in a dose-dependent increase in the speed of appearance of daphnids in the illuminated zone of the test apparatus (i.e. a faster positive phototaxis response). A similar dose-dependent response was observed in a test solution where the salt content of FPW was recreated in the absence of other components, suggesting that the effect was largely driven by salinity. The effect of FPW was significant when the raw FPW sample was diluted to 20% of its initial strength, while the effect of salt-matched solution was significant at a 10% dilution. A distinct effect was observed following FPW pre-exposure. After a 24 h pre-exposure to 1.5% FPW, Daphnia displayed a significantly inhibited positive phototaxis response when examined in control water, relative to control animals that were not pre-exposed to FPW. This effect was not observed in salinity pre-exposed animals, however these daphnids displayed a significantly reduced phototactic response when tested in saline waters, indicating a loss of the positive phototaxis seen in naïve organisms. These data indicate that FPW can induce perturbations in the behavior of aquatic invertebrates, an effect that may influence processes such as feeding and predation rates.
Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation
Calderón-Delgado et al., May 2019
Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation
Ivonne C. Calderón-Delgado, Diego A. Mora-Solarte, Yohana M. Velasco-Santamaría (2019). Environmental Monitoring and Assessment, 399. 10.1007/s10661-019-7519-8
Abstract:
In South America, Colombia is known as an important oil-producing country. However, the environmental impact of crude oil industry has not been studied deeply and few studies have been carried out for evaluating responses of algae and its adaptation under specific conditions. Enzymatic and physiological effects in Chlorella vulgaris and its potential for bioremediation after exposure to produced water (PW) were assessed using different PW concentrations (0, 25, 50, 75 and 100%) and crude oil. Variables such as cell density, growth rate (μ), percentage of growth inhibition (% I), chlorophyll a and b and cell diameter were evaluated during 5 days. Furthermore, enzymatic biomarkers such as superoxide dismutase (SOD) and catalase (CAT) were also measured. Results showed that the treatment with 100% PW had the highest cell density and μ; similarly, 25% PW treatment had a similar behaviour, being these two treatments with the highest growth. A dose-dependent response was seen for chlorophyll a and b and cell diameter, showing significant differences between treatments and the control. Different levels of SOD and CAT were observed in algae exposed to PW. At 24 h, an increase in SOD and CAT activity was observed, probably due to effects caused by xenobiotics. After 72 h, a decrease in the activity of both enzymes was observed. The results evidenced that C. vulgaris can adapt easily to PW, showing an increase on its growth and stabilisation in its antioxidant activity. Additionally, cell diameter results and decrease of hydrocarbons and phenols show the potential of these algae to degrade xenobiotics from PW.
In South America, Colombia is known as an important oil-producing country. However, the environmental impact of crude oil industry has not been studied deeply and few studies have been carried out for evaluating responses of algae and its adaptation under specific conditions. Enzymatic and physiological effects in Chlorella vulgaris and its potential for bioremediation after exposure to produced water (PW) were assessed using different PW concentrations (0, 25, 50, 75 and 100%) and crude oil. Variables such as cell density, growth rate (μ), percentage of growth inhibition (% I), chlorophyll a and b and cell diameter were evaluated during 5 days. Furthermore, enzymatic biomarkers such as superoxide dismutase (SOD) and catalase (CAT) were also measured. Results showed that the treatment with 100% PW had the highest cell density and μ; similarly, 25% PW treatment had a similar behaviour, being these two treatments with the highest growth. A dose-dependent response was seen for chlorophyll a and b and cell diameter, showing significant differences between treatments and the control. Different levels of SOD and CAT were observed in algae exposed to PW. At 24 h, an increase in SOD and CAT activity was observed, probably due to effects caused by xenobiotics. After 72 h, a decrease in the activity of both enzymes was observed. The results evidenced that C. vulgaris can adapt easily to PW, showing an increase on its growth and stabilisation in its antioxidant activity. Additionally, cell diameter results and decrease of hydrocarbons and phenols show the potential of these algae to degrade xenobiotics from PW.
Temporal Changes in Microbial Community Composition and Geochemistry in Flowback and Produced Water from the Duvernay Formation
Zhong et al., April 2019
Temporal Changes in Microbial Community Composition and Geochemistry in Flowback and Produced Water from the Duvernay Formation
Cheng Zhong, Jiaying Li, Shannon Flynn, Camilla L Nesbø, Chenxing Sun, Konstantin von Gunten, Brian D Lanoil, Greg G Goss, Jonathan W. Martin, Daniel S Alessi (2019). ACS Earth and Space Chemistry, . 10.1021/acsearthspacechem.9b00037
Abstract:
Microbial activity in flowback and produced water (FPW) may negatively influence shale oil and gas extraction. However the impacts of using recycled produced water (RPW) for subsequent fracturing jobs are not well-understood. In this study, we compared time series of FPW samples from two horizontally fractured wells drilled into the Duvernay Formation in Alberta, Canada, well 1 used RPW in the makeup of the hydraulic fracturing fluid (HFF) while well 2 did not. 16S rRNA gene sequencing and live/dead cell enumeration were used to track microbial communities. Within 20 days of flowback, total dissolved solids in well 1 and well 2 increased from 5,310 mg/L and 288 mg/L to over 150,000 mg/L, and FPW temperatures increased from 20°C and 9°C to 77°C and 71°C, respectively. Alkyl dimethyl benzyl ammonium chloride (biocide) in well 2 decreased from 25 µg/L to below the detection limit of 0.5 µg/L. Cellular biomass decreased from ~105 cells mL-1 to less than the detection limit of 105 cells mL-1 in both wells, and the community in the samples was initially diverse, but rapidly shifted to become dominated by the sulfidogenic lineage Halanaerobium. Methanogens were detected at low relative abundance within archaea. DNA concentrations in FPW after 20 days were inadequate for sequencing. Comparing the two wells, the start time of Halanaerobium enrichment was considerably shortened in well 1 relative to well 2. Our results suggest that subsurface environmental parameters primarily drive the rapid enrichment of sulfidogenic and halotolerant bacteria and current recycling strategies can facilitate the growth of these bacteria, while biocide seems to be a less important factor in this shift.
Microbial activity in flowback and produced water (FPW) may negatively influence shale oil and gas extraction. However the impacts of using recycled produced water (RPW) for subsequent fracturing jobs are not well-understood. In this study, we compared time series of FPW samples from two horizontally fractured wells drilled into the Duvernay Formation in Alberta, Canada, well 1 used RPW in the makeup of the hydraulic fracturing fluid (HFF) while well 2 did not. 16S rRNA gene sequencing and live/dead cell enumeration were used to track microbial communities. Within 20 days of flowback, total dissolved solids in well 1 and well 2 increased from 5,310 mg/L and 288 mg/L to over 150,000 mg/L, and FPW temperatures increased from 20°C and 9°C to 77°C and 71°C, respectively. Alkyl dimethyl benzyl ammonium chloride (biocide) in well 2 decreased from 25 µg/L to below the detection limit of 0.5 µg/L. Cellular biomass decreased from ~105 cells mL-1 to less than the detection limit of 105 cells mL-1 in both wells, and the community in the samples was initially diverse, but rapidly shifted to become dominated by the sulfidogenic lineage Halanaerobium. Methanogens were detected at low relative abundance within archaea. DNA concentrations in FPW after 20 days were inadequate for sequencing. Comparing the two wells, the start time of Halanaerobium enrichment was considerably shortened in well 1 relative to well 2. Our results suggest that subsurface environmental parameters primarily drive the rapid enrichment of sulfidogenic and halotolerant bacteria and current recycling strategies can facilitate the growth of these bacteria, while biocide seems to be a less important factor in this shift.
Characterization of Organic Matter in Water from Oil and Gas Wells Hydraulically Fractured with Recycled Water
Kim et al., April 2019
Characterization of Organic Matter in Water from Oil and Gas Wells Hydraulically Fractured with Recycled Water
Seongyun Kim, Pinar Omur-Ozbek, Ken Carlson (2019). Journal of Hazardous Materials, . 10.1016/j.jhazmat.2019.04.034
Abstract:
Liquid chromatography quadrupole time-of-flight mass spectrometry was performed to understand how frac fluid with recycled water (RWA) and frac fluid with fresh water (FWA) compare when subjected to downhole temperature and oxidation conditions. Ethylene oxide and propylated glycol functional units were quantified from both RWA and FWA. Qualitative analysis was performed using Agilent qualitative analysis software B.06.00 based on the exact mass of the chemical compound. Acetone, aldol, alkoxylated phenol formaldehyde resin, diethylbenzene, dipropylene glycol, d-Limonene, ether salt, ethylbenzene, n-dodecyl-2-pyrrolidone, dodecylbenzenesulfonate isopropanolamine, polyethylene glycol, and triethylene glycol were detected in FWA and RWA samples. In the van Krevelen diagram, FWA and RWA show a low degree of oxidation and highly saturated organic compounds. Kendrick mass defect (KMD) analysis was applied using ethylene oxide and propylated glycol units. KMD analysis based on ethylene oxide was scattered between 0 and 0.1, while some KMD analyses based on the propylated glycol are close to 1. FWA had an average carbon number of 32.3 and double bond equivalent (DBE) of 9.8 while RWA had average carbon number of 31.5 and DBE of 9.5. RWA contained predominantly C21-C40 compounds, while FWA had a higher concentration in the over C41 range.
Liquid chromatography quadrupole time-of-flight mass spectrometry was performed to understand how frac fluid with recycled water (RWA) and frac fluid with fresh water (FWA) compare when subjected to downhole temperature and oxidation conditions. Ethylene oxide and propylated glycol functional units were quantified from both RWA and FWA. Qualitative analysis was performed using Agilent qualitative analysis software B.06.00 based on the exact mass of the chemical compound. Acetone, aldol, alkoxylated phenol formaldehyde resin, diethylbenzene, dipropylene glycol, d-Limonene, ether salt, ethylbenzene, n-dodecyl-2-pyrrolidone, dodecylbenzenesulfonate isopropanolamine, polyethylene glycol, and triethylene glycol were detected in FWA and RWA samples. In the van Krevelen diagram, FWA and RWA show a low degree of oxidation and highly saturated organic compounds. Kendrick mass defect (KMD) analysis was applied using ethylene oxide and propylated glycol units. KMD analysis based on ethylene oxide was scattered between 0 and 0.1, while some KMD analyses based on the propylated glycol are close to 1. FWA had an average carbon number of 32.3 and double bond equivalent (DBE) of 9.8 while RWA had average carbon number of 31.5 and DBE of 9.5. RWA contained predominantly C21-C40 compounds, while FWA had a higher concentration in the over C41 range.
A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water
Xu et al., April 2019
A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water
Xiaohui Xu, Xiao Zhang, Genny Carrillo, Yan Zhong, Haidong Kan, Bangning Zhang (2019). Environmental Pollution, . 10.1016/j.envpol.2019.04.016
Abstract:
Background Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated. Objectives In this study, we assessed the carcinogenicity of 1173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA). Methods We linked the HF chemical data with the agent classification data from the international Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1534 chemicals) to evaluate potential carcinogenicity of the chemicals. Results The Chemical Abstract Service registry numbers for chemicals were used for data linkage. Among 1173 chemicals, 1039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.
Background Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated. Objectives In this study, we assessed the carcinogenicity of 1173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA). Methods We linked the HF chemical data with the agent classification data from the international Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1534 chemicals) to evaluate potential carcinogenicity of the chemicals. Results The Chemical Abstract Service registry numbers for chemicals were used for data linkage. Among 1173 chemicals, 1039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.
Temporal and spatial trends of conventional and unconventional oil and gas waste management in Pennsylvania, 1991–2017
Hill et al., April 2019
Temporal and spatial trends of conventional and unconventional oil and gas waste management in Pennsylvania, 1991–2017
Lee Ann L. Hill, Eliza D. Czolowski, Dominic DiGiulio, Seth B. C. Shonkoff (2019). Science of The Total Environment, . 10.1016/j.scitotenv.2019.03.475
Abstract:
The significant development of oil and gas from the Marcellus Shale and other geological formations in Pennsylvania over the last decade has generated large volumes of liquid and solid waste. In this paper we use data reported to the Pennsylvania Department of Environmental Protection (PADEP) to examine temporal and spatial trends in generation and management of liquid and solid waste from both conventional and unconventional oil and gas activities in Pennsylvania between 1991 and 2017. While previous assessments have examined this waste inventory in part, no complete assessment of waste quantity, waste types, waste handling practices, and spatial waste tracking has been undertaken using all currently available full years of Pennsylvania oil and gas waste data. In 2017 more than half of oil and gas wastewater by volume was reused at well pads to facilitate more hydrocarbon production while the majority of solid waste by volume was disposed of at in-state landfills. The spatial resolution of reporting of wastewater generation and handling from unconventional operations has improved substantially with recent regulations and reporting requirements; however, conventional oil and gas development was exempt from the more stringent reporting requirements and thus spatially-explicit data on wastewater generation and handling from conventional oil and gas development is still lacking. In addition, a third of the liquid waste across all years in the database lack a reported final destination. Spatially explicit cradle-to-grave reporting for waste handling from both conventional and unconventional oil and gas development is important to assess a number of environmental and human health hazards and risks of oil and gas development and associated operations and practices.
The significant development of oil and gas from the Marcellus Shale and other geological formations in Pennsylvania over the last decade has generated large volumes of liquid and solid waste. In this paper we use data reported to the Pennsylvania Department of Environmental Protection (PADEP) to examine temporal and spatial trends in generation and management of liquid and solid waste from both conventional and unconventional oil and gas activities in Pennsylvania between 1991 and 2017. While previous assessments have examined this waste inventory in part, no complete assessment of waste quantity, waste types, waste handling practices, and spatial waste tracking has been undertaken using all currently available full years of Pennsylvania oil and gas waste data. In 2017 more than half of oil and gas wastewater by volume was reused at well pads to facilitate more hydrocarbon production while the majority of solid waste by volume was disposed of at in-state landfills. The spatial resolution of reporting of wastewater generation and handling from unconventional operations has improved substantially with recent regulations and reporting requirements; however, conventional oil and gas development was exempt from the more stringent reporting requirements and thus spatially-explicit data on wastewater generation and handling from conventional oil and gas development is still lacking. In addition, a third of the liquid waste across all years in the database lack a reported final destination. Spatially explicit cradle-to-grave reporting for waste handling from both conventional and unconventional oil and gas development is important to assess a number of environmental and human health hazards and risks of oil and gas development and associated operations and practices.
Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water
Akyon et al., February 2019
Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water
Benay Akyon, Daniel Lipus, Kyle Bibby (2019). Science of The Total Environment, . 10.1016/j.scitotenv.2019.02.056
Abstract:
Water generated by hydraulic fracturing for the production of oil and gas, commonly termed ‘produced water’, may contain residual organic compounds from the fracturing process or the subsurface formation. Biological treatment is a potential technology to remove residual organic compounds in produced water. Biocides are often added to both fracturing fluids and produced water to limit undesirable microbiological activity, and glutaraldehyde is the most commonly used biocide in hydraulic fracturing. Residual biocides in produced water can limit biological treatment efficiency. We evaluated the effect of glutaraldehyde on the biodegradation of five of the most commonly reported organic compounds in hydraulic fracturing fluids in an engineered biofilm treatment. Our results demonstrated that glutaraldehyde delays biological organic compound removal by introducing a biodegradation lag phase. In addition, the effects of glutaraldehyde were more pronounced for more rapidly degraded compounds. Finally, the presence of glutaraldehyde did not decrease microbial abundance nor drive microbial community structure, suggesting that observed effects were due to altered microbial activity. These results highlight the necessity to consider co-contaminant interactions during treatment of complex waste streams where residual biocide may be present.
Water generated by hydraulic fracturing for the production of oil and gas, commonly termed ‘produced water’, may contain residual organic compounds from the fracturing process or the subsurface formation. Biological treatment is a potential technology to remove residual organic compounds in produced water. Biocides are often added to both fracturing fluids and produced water to limit undesirable microbiological activity, and glutaraldehyde is the most commonly used biocide in hydraulic fracturing. Residual biocides in produced water can limit biological treatment efficiency. We evaluated the effect of glutaraldehyde on the biodegradation of five of the most commonly reported organic compounds in hydraulic fracturing fluids in an engineered biofilm treatment. Our results demonstrated that glutaraldehyde delays biological organic compound removal by introducing a biodegradation lag phase. In addition, the effects of glutaraldehyde were more pronounced for more rapidly degraded compounds. Finally, the presence of glutaraldehyde did not decrease microbial abundance nor drive microbial community structure, suggesting that observed effects were due to altered microbial activity. These results highlight the necessity to consider co-contaminant interactions during treatment of complex waste streams where residual biocide may be present.
Assessment of impacts of diphenyl phosphate on groundwater and near-surface environments: Sorption and toxicity
Funk et al., January 2019
Assessment of impacts of diphenyl phosphate on groundwater and near-surface environments: Sorption and toxicity
Sean P. Funk, Lisa Duffin, Yuhe He, Craig McMullen, Chenxing Sun, Nicholas Utting, Jonathan W. Martin, Greg G. Goss, Daniel S. Alessi (2019). Journal of Contaminant Hydrology, . 10.1016/j.jconhyd.2019.01.002
Abstract:
Wastewater recovered from hydraulic fracturing is referred to as flowback and produced water (FPW), and is often saline, contains numerous organic and inorganic constituents, and may pose threats to groundwater resources. Hundreds of spills of FPW have been reported to the Alberta Energy Regulator each year. Recently, samples of FPW derived from hydraulic fracturing of the Duvernay Formation, AB, were found to contain a previously unidentified class of aryl phosphates, including diphenyl phosphate (DPP), triphenyl phosphate (TPP), and others. Aryl phosphates are also used in a variety of other industries and their constituents can be found in flame retardants, plasticizers, lubricants, hydraulic fluids, and oxidizers. Many of these aryl phosphates break down into DPP. Therefore, it is important to determine the environmental fate and potential impact of DPP if spilled in the near-surface, as DPP is an emerging contaminant in soil and groundwater systems. This study was aimed at determining 1) the sorption behavior of DPP onto various surficial sediments collected within the Fox Creek, AB region, and 2) the toxicity of DPP toward aquatic ecosystems. We report that the sorption of DPP onto both clay-rich soils and sandy sediment was low compared to that of other aryl phosphates, with an average log KOC value of 2.30 ± 0.42 (1σ). Therefore, the transport of DPP in groundwater would be rapid due to its low degree of sorption on surficial materials. We also determined the acute 96 h-LC50 of DPP on zebrafish embryos to be 50.0 ± 7.1 mg/L. Su et al. (2014) studied the toxic effects of DPP and TPP on chicken embryonic hepatocytes and found that DPP had less cytotoxic effects than TPP but altered more gene transcripts. From the results our study, we infer that DPP may pose an environmental risk to aquatic ecosystems if released into the environment.
Wastewater recovered from hydraulic fracturing is referred to as flowback and produced water (FPW), and is often saline, contains numerous organic and inorganic constituents, and may pose threats to groundwater resources. Hundreds of spills of FPW have been reported to the Alberta Energy Regulator each year. Recently, samples of FPW derived from hydraulic fracturing of the Duvernay Formation, AB, were found to contain a previously unidentified class of aryl phosphates, including diphenyl phosphate (DPP), triphenyl phosphate (TPP), and others. Aryl phosphates are also used in a variety of other industries and their constituents can be found in flame retardants, plasticizers, lubricants, hydraulic fluids, and oxidizers. Many of these aryl phosphates break down into DPP. Therefore, it is important to determine the environmental fate and potential impact of DPP if spilled in the near-surface, as DPP is an emerging contaminant in soil and groundwater systems. This study was aimed at determining 1) the sorption behavior of DPP onto various surficial sediments collected within the Fox Creek, AB region, and 2) the toxicity of DPP toward aquatic ecosystems. We report that the sorption of DPP onto both clay-rich soils and sandy sediment was low compared to that of other aryl phosphates, with an average log KOC value of 2.30 ± 0.42 (1σ). Therefore, the transport of DPP in groundwater would be rapid due to its low degree of sorption on surficial materials. We also determined the acute 96 h-LC50 of DPP on zebrafish embryos to be 50.0 ± 7.1 mg/L. Su et al. (2014) studied the toxic effects of DPP and TPP on chicken embryonic hepatocytes and found that DPP had less cytotoxic effects than TPP but altered more gene transcripts. From the results our study, we infer that DPP may pose an environmental risk to aquatic ecosystems if released into the environment.
Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice
Balise et al., November 2024
Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice
Victoria Balise, Jennifer Cornelius-green, Chris Kassotis, R. Scott Rector, John P. Thyfault, Susan Carol Nagel (2024). Frontiers in Endocrinology, . 10.3389/fendo.2019.00323
Abstract:
Previous studies conducted in our laboratory have found altered adult health outcomes in animals with prenatal exposure to environmentally relevant levels of unconventional oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to examine potential metabolic health outcomes following a preconception, prenatal and postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body composition, spontaneous activity, energy expenditure, and glucose tolerance were evaluated in 7-month-old female offspring. Neither body weight nor body composition differed in 7-month female mice. However, females exposed to 1.5 and 150 µg/kg/day UOG mix had lower total and resting energy expenditure within the dark cycle. In the light cycle, the 1500 µg//kg/day group had lower total energy expenditure and the 1.5 µg/kg/day group had lower resting energy expenditure. Females exposed to the 150 µg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed to the 1500 µg/kg/day group had lower activity in the light cycle. This study reports for the first time that developmental exposure to a mixture of 23 UOG chemicals alters energy expenditure and spontaneous activity in adult female mice.
Previous studies conducted in our laboratory have found altered adult health outcomes in animals with prenatal exposure to environmentally relevant levels of unconventional oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to examine potential metabolic health outcomes following a preconception, prenatal and postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body composition, spontaneous activity, energy expenditure, and glucose tolerance were evaluated in 7-month-old female offspring. Neither body weight nor body composition differed in 7-month female mice. However, females exposed to 1.5 and 150 µg/kg/day UOG mix had lower total and resting energy expenditure within the dark cycle. In the light cycle, the 1500 µg//kg/day group had lower total energy expenditure and the 1.5 µg/kg/day group had lower resting energy expenditure. Females exposed to the 150 µg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed to the 1500 µg/kg/day group had lower activity in the light cycle. This study reports for the first time that developmental exposure to a mixture of 23 UOG chemicals alters energy expenditure and spontaneous activity in adult female mice.
Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver–Julesburg Basin
Hull et al., December 2018
Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver–Julesburg Basin
Natalie M. Hull, James S. Rosenblum, Charles E. Robertson, J. Kirk Harris, Karl G. Linden (2018). Science of The Total Environment, 183-192. 10.1016/j.scitotenv.2018.06.067
Abstract:
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Characterization and implications of solids associated with hydraulic fracturing flowback and produced water from the Duvernay Formation, Alberta, Canada
Flynn et al., December 2018
Characterization and implications of solids associated with hydraulic fracturing flowback and produced water from the Duvernay Formation, Alberta, Canada
Shannon L. Flynn, Konstantin von Gunten, Tyler Warchola, Katherine Snihur, Tori Z. Forbes, Greg G. Goss, Murray K. Gingras, Kurt O. Konhauser, Daniel S. Alessi (2018). Environmental Science: Processes & Impacts, . 10.1039/C8EM00404H
Abstract:
Public concern is heightened around flowback and produced water (FPW) generated by the hydraulic fracturing process. FPW is a complex mix of organic and inorganic solutes derived from both the injected hydraulic fracturing fluid and interactions with the subsurface lithology. Few studies to date have systematically investigated the composition of FPW or its individual components. Here, we provide the first systematic characterization of the composition of the solids associated with FPW by analyzing samples from three wells drilled into the Duvernay Formation in Alberta, Canada. The FPW initially returned to the surface with high total dissolved solids (greater than 170 000 mg L−1) and enriched with Fe(II), silica, sulfate, barium, and strontium. The solids form two distinct phases once the FPW reached the surface: (1) silica-enriched Fe(III) oxyhydroxides, and (2) a barite–celestine solid solution. We hypothesize that the precipitation of the amorphous silica-enriched Fe(III) oxyhydroxide is a two-step process, where first the silica precipitates as a function of the cooling of the FPW from elevated subsurface temperatures to ambient surface temperatures. Next, the silica acts as a template for the precipitation of Fe(III) oxyhydroxide as the diffusion of oxygen into the subsurface causes oxidation of aqueous Fe(II). The barite–celestine solid solution precipitates solely as a function of cooling. Elevated dissolved Fe concentrations in FPW and modeled saturation indices from five North American shale plays (Marcellus, Fayetteville, Barnett, Bakken, and Denver-Julesburg) indicate that solids similar to those found in Duvernay FPW, specifically Fe(III) oxyhydroxides, barite and quartz, are likely to occur. With the solids known to carry a significant portion of FPW's toxicity and organic contaminant load, the development of new treatment technologies, such as the oxidation of the Fe(II) in FPW, may increase FPW reuse and reduce the environmental risk posed by FPW.
Public concern is heightened around flowback and produced water (FPW) generated by the hydraulic fracturing process. FPW is a complex mix of organic and inorganic solutes derived from both the injected hydraulic fracturing fluid and interactions with the subsurface lithology. Few studies to date have systematically investigated the composition of FPW or its individual components. Here, we provide the first systematic characterization of the composition of the solids associated with FPW by analyzing samples from three wells drilled into the Duvernay Formation in Alberta, Canada. The FPW initially returned to the surface with high total dissolved solids (greater than 170 000 mg L−1) and enriched with Fe(II), silica, sulfate, barium, and strontium. The solids form two distinct phases once the FPW reached the surface: (1) silica-enriched Fe(III) oxyhydroxides, and (2) a barite–celestine solid solution. We hypothesize that the precipitation of the amorphous silica-enriched Fe(III) oxyhydroxide is a two-step process, where first the silica precipitates as a function of the cooling of the FPW from elevated subsurface temperatures to ambient surface temperatures. Next, the silica acts as a template for the precipitation of Fe(III) oxyhydroxide as the diffusion of oxygen into the subsurface causes oxidation of aqueous Fe(II). The barite–celestine solid solution precipitates solely as a function of cooling. Elevated dissolved Fe concentrations in FPW and modeled saturation indices from five North American shale plays (Marcellus, Fayetteville, Barnett, Bakken, and Denver-Julesburg) indicate that solids similar to those found in Duvernay FPW, specifically Fe(III) oxyhydroxides, barite and quartz, are likely to occur. With the solids known to carry a significant portion of FPW's toxicity and organic contaminant load, the development of new treatment technologies, such as the oxidation of the Fe(II) in FPW, may increase FPW reuse and reduce the environmental risk posed by FPW.
Hydraulic Fracturing Fluid Compositions Induce Differential Enrichment of Soil Bacterial Communities
Lozano et al., December 2018
Hydraulic Fracturing Fluid Compositions Induce Differential Enrichment of Soil Bacterial Communities
Tania M. Lozano, Aubrey Lynn McCutchan, Mark James Krzmarzick (2018). Environmental Engineering Science, . 10.1089/ees.2018.0271
Abstract:
Hydraulic fracturing has become a well-established and widespread technology for the extraction of oil and natural gas. Hydraulic fracturing fluids (HFFs) are widely varied and contain many chemicals that are toxic to human and ecological health. HFFs are often spilled on surface soils where their fate and transport is uncertain. In this study, six representative mixtures of HFFs were incubated with a surface soil in bench-scale microcosms, and the microbial community was analyzed over 78 days. The chemical oxygen demand decreased over time, although a significant recalcitrant fraction was found for four of the six amended fluids. With Illumina MiSeq sequencing of a 16S ribosomal RNA (rRNA) gene amplification and follow-through quantitative polymerase chain reaction (qPCR) assays, 24 bacterial taxa closely related to known species were identified to be enriched by at least one of the representative HFFs. These taxa are mostly closely related to well-known xenobiotic degraders, however, the composition of the enrichment was highly unique for each representative HFF. The results indicate that the complex mixtures of biocides and other components elicit unique bacterial community responses in the same soil, thus suggesting that the bioremediation pathways of HFF constituents in soils may differ based on exact HFF composition.
Hydraulic fracturing has become a well-established and widespread technology for the extraction of oil and natural gas. Hydraulic fracturing fluids (HFFs) are widely varied and contain many chemicals that are toxic to human and ecological health. HFFs are often spilled on surface soils where their fate and transport is uncertain. In this study, six representative mixtures of HFFs were incubated with a surface soil in bench-scale microcosms, and the microbial community was analyzed over 78 days. The chemical oxygen demand decreased over time, although a significant recalcitrant fraction was found for four of the six amended fluids. With Illumina MiSeq sequencing of a 16S ribosomal RNA (rRNA) gene amplification and follow-through quantitative polymerase chain reaction (qPCR) assays, 24 bacterial taxa closely related to known species were identified to be enriched by at least one of the representative HFFs. These taxa are mostly closely related to well-known xenobiotic degraders, however, the composition of the enrichment was highly unique for each representative HFF. The results indicate that the complex mixtures of biocides and other components elicit unique bacterial community responses in the same soil, thus suggesting that the bioremediation pathways of HFF constituents in soils may differ based on exact HFF composition.
In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW)
He et al., December 2018
In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW)
Yuhe He, Yifeng Zhang, Jonathan W. Martin, Daniel S. Alessi, John P. Giesy, Greg G. Goss (2018). Environment International, 824-831. 10.1016/j.envint.2018.10.014
Abstract:
Potential effects of horizontal drilling combined with high-volume hydraulic fracturing (HF) have drawn significant public concern, especially on the handling, treatment, and disposal of HF flowback and produced water (HF-FPW). Previous studies indicated HF-FPW could significantly disrupt biotransformation and expressions of genes related to the endocrine system. This study focused on effects of organic extracts of HF-FPW on receptor binding activity using several transactivation assays. Six HF-FPW samples were collected from 2 wells (Well A and Well B, 3 time points at each well). These were separated by filtration into aqueous (W) and particulate (S) phases, and organics were extracted from all 12 subsamples. Of all the tested fractions, sample B1-S had the greatest Σ13PAH (11,000 ng/L) and B3-S has the greatest Σ4alkyl-PAHs (16,000 ng/L). Nuclear receptor binding activity of all the extracts on aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR) were screened using H4IIE-luc, MVLN-luc, and MDA-kb2 cells, respectively. FPWs from various HF wells exhibited distinct nuclear receptor binding effects. The strongest AhR agonist activity was detected in B3-S, with 450 ± 20 μg BaP/L equivalency at 5 × exposure. The greatest ER agonist activity was detected in A1-W, with 5.3 ± 0.9 nM E2 equivalency at 10× exposures. There is a decreasing trend in ER agonist activity from A1 to A3 in both aqueous and particulate fractions from Well A, while there is an increasing trend in ER agonist activity from B1 to B3 in aqueous fractions from Well B. This study provides novel information on the sources of endocrine disruptive potentials in various HF-FPW considering both temporal and spatial variability. Results suggest that reclamation or remediation and risk assessment of HF-FPW spills likely requires multiple strategies including understanding the properties of each spill with respect to fractured geological formation and physiochemical properties of the injected fluid.
Potential effects of horizontal drilling combined with high-volume hydraulic fracturing (HF) have drawn significant public concern, especially on the handling, treatment, and disposal of HF flowback and produced water (HF-FPW). Previous studies indicated HF-FPW could significantly disrupt biotransformation and expressions of genes related to the endocrine system. This study focused on effects of organic extracts of HF-FPW on receptor binding activity using several transactivation assays. Six HF-FPW samples were collected from 2 wells (Well A and Well B, 3 time points at each well). These were separated by filtration into aqueous (W) and particulate (S) phases, and organics were extracted from all 12 subsamples. Of all the tested fractions, sample B1-S had the greatest Σ13PAH (11,000 ng/L) and B3-S has the greatest Σ4alkyl-PAHs (16,000 ng/L). Nuclear receptor binding activity of all the extracts on aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR) were screened using H4IIE-luc, MVLN-luc, and MDA-kb2 cells, respectively. FPWs from various HF wells exhibited distinct nuclear receptor binding effects. The strongest AhR agonist activity was detected in B3-S, with 450 ± 20 μg BaP/L equivalency at 5 × exposure. The greatest ER agonist activity was detected in A1-W, with 5.3 ± 0.9 nM E2 equivalency at 10× exposures. There is a decreasing trend in ER agonist activity from A1 to A3 in both aqueous and particulate fractions from Well A, while there is an increasing trend in ER agonist activity from B1 to B3 in aqueous fractions from Well B. This study provides novel information on the sources of endocrine disruptive potentials in various HF-FPW considering both temporal and spatial variability. Results suggest that reclamation or remediation and risk assessment of HF-FPW spills likely requires multiple strategies including understanding the properties of each spill with respect to fractured geological formation and physiochemical properties of the injected fluid.
Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management
McDevitt et al., November 2018
Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management
Bonnie McDevitt, Molly McLaughlin, Charles A. Cravotta, Moses A. Ajemigbitse, Katherine J. Van Sice, Jens Blotevogel, Thomas Borch, Nathaniel R. Warner (2018). Environmental Science: Processes & Impacts, . 10.1039/C8EM00336J
Abstract:
In the western U.S., produced water from oil and gas wells discharged to surface water augments downstream supplies used for irrigation and livestock watering. Here we investigate six permitted discharges on three neighboring tributary systems in Wyoming. During 2013–16, we evaluated radium activities of the permitted discharges and the potential for radium accumulation in associated stream sediments. Radium activities of the sediments at the points of discharge ranged from approximately 200–3600 Bq kg−1 with elevated activities above the background of 74 Bq kg−1 over 30 km downstream of one permitted discharge. Sediment as deep as 30 cm near the point of discharge had radium activities elevated above background. X-ray diffraction and targeted sequential extraction of radium in sediments indicate that radium is likely coprecipitated with carbonate and, to a lesser extent, sulfate minerals. PHREEQC modeling predicts radium coprecipitation with aragonite and barite, but over-estimates the latter compared to observations of downstream sediment, where carbonate predominates. Mass-balance calculations indicate over 3 billion Bq of radium activity (226Ra + 228Ra) is discharged each year from five of the discharges, combined, with only 5 percent of the annual load retained in stream sediments within 100 m of the effluent discharges; the remaining 95 percent of the radium is transported farther downstream as sediment-associated and aqueous species.
In the western U.S., produced water from oil and gas wells discharged to surface water augments downstream supplies used for irrigation and livestock watering. Here we investigate six permitted discharges on three neighboring tributary systems in Wyoming. During 2013–16, we evaluated radium activities of the permitted discharges and the potential for radium accumulation in associated stream sediments. Radium activities of the sediments at the points of discharge ranged from approximately 200–3600 Bq kg−1 with elevated activities above the background of 74 Bq kg−1 over 30 km downstream of one permitted discharge. Sediment as deep as 30 cm near the point of discharge had radium activities elevated above background. X-ray diffraction and targeted sequential extraction of radium in sediments indicate that radium is likely coprecipitated with carbonate and, to a lesser extent, sulfate minerals. PHREEQC modeling predicts radium coprecipitation with aragonite and barite, but over-estimates the latter compared to observations of downstream sediment, where carbonate predominates. Mass-balance calculations indicate over 3 billion Bq of radium activity (226Ra + 228Ra) is discharged each year from five of the discharges, combined, with only 5 percent of the annual load retained in stream sediments within 100 m of the effluent discharges; the remaining 95 percent of the radium is transported farther downstream as sediment-associated and aqueous species.
Origin of Flowback and Produced Waters from Sichuan Basin, China
Ni et al., November 2018
Origin of Flowback and Produced Waters from Sichuan Basin, China
Yunyan Ni, Caineng Zou, Huiying Cui, Jian Li, Nancy E. Lauer, Jennifer S. Harkness, Andrew J. Kondash, Rachel M. Coyte, Gary S. Dwyer, Dan Liu, Dazhong Dong, Fengrong Liao, Avner Vengosh (2018). Environmental Science & Technology, . 10.1021/acs.est.8b04345
Abstract:
Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin. The chemical and isotope data indicate that the formation waters in Sichuan Basin originated from relics of different stages of evaporated seawater modified by water-rock interactions. The FP water from shale gas wells derives from blending of injected hydraulic fracturing water and entrapped saline (Cl ∼ 50,000 mg/L) formation water. Variations in the chemistry, δ18O, δ11B, and 87Sr/86Sr of FP water over time indicate that the mixing between the two sources varies with time, with a contribution of 75% (first 6 months) to 20% (>year) of the injected hydraulic fracturing water in the blend that compose the FP water. Mass-balance calculation suggests that the returned hydraulic fracturing water consisted of 28-49% of the volume of the injected hydraulic fracturing water, about a year after the initial hydraulic fracturing. We show differential mobilization of Na, B, Sr, and Li from the shale rocks during early stages of operation, which resulted in higher Na/Cl, B/Cl, Li/Cl, and 87Sr/86Sr and lower δ11B of the FP water during early stages of FP water formation relative to the original saline formation water recorded in late stages FP water. This study provides a geochemical framework for characterization of formation waters from different geological strata, and thus the ability to distinguish between different sources of oil and gas wastewater in Sichuan Basin.
Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin. The chemical and isotope data indicate that the formation waters in Sichuan Basin originated from relics of different stages of evaporated seawater modified by water-rock interactions. The FP water from shale gas wells derives from blending of injected hydraulic fracturing water and entrapped saline (Cl ∼ 50,000 mg/L) formation water. Variations in the chemistry, δ18O, δ11B, and 87Sr/86Sr of FP water over time indicate that the mixing between the two sources varies with time, with a contribution of 75% (first 6 months) to 20% (>year) of the injected hydraulic fracturing water in the blend that compose the FP water. Mass-balance calculation suggests that the returned hydraulic fracturing water consisted of 28-49% of the volume of the injected hydraulic fracturing water, about a year after the initial hydraulic fracturing. We show differential mobilization of Na, B, Sr, and Li from the shale rocks during early stages of operation, which resulted in higher Na/Cl, B/Cl, Li/Cl, and 87Sr/86Sr and lower δ11B of the FP water during early stages of FP water formation relative to the original saline formation water recorded in late stages FP water. This study provides a geochemical framework for characterization of formation waters from different geological strata, and thus the ability to distinguish between different sources of oil and gas wastewater in Sichuan Basin.
Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 1. Source phases that control the release of Ra from Marcellus Shale
Landis et al., September 2018
Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 1. Source phases that control the release of Ra from Marcellus Shale
Joshua D. Landis, Mukul Sharma, Devon Renock, Danielle Niu (2018). Chemical Geology, 1-13. 10.1016/j.chemgeo.2018.06.013
Abstract:
Hydraulic fracturing of the Marcellus Shale produces wastewaters that are hypersaline and highly enriched in isotopes of radium. Radium is understood to derive from the Marcellus Shale itself, but its source phases and their contributions to wastewater production have not been described. Using sequential extractions and experimental leachates, we characterize two distinct end-members that could contribute Ra to wastewaters, (1) a mineral phase, which hosts labile228Ra and has 226Ra/228Ra atom ratios ~250, and (2) an organic phase, which hosts exchangeable226Ra and has 226Ra/228Ra ~10,000. In leaching experiments we observed rapid extraction of Ra from these phases, with high ionic strength solutions leaching up to 14% of Ra from the shale in just hours. Radium concentrations and 226Ra/228Ra ratios increase with [Ca2+] of the leaching solution, and solutions approaching 1 M Ca2+ produce 226Ra/228Ra ratios compatible with Marcellus wastewaters. In contrast, pure water removes <0.5% of Ra from the shale with low 226Ra/228Ra ratios incompatible with wastewaters. Experimental results and wastewater data together provide a coherent picture, that the distinctive Ra isotopic signature of Marcellus wastewaters results from contemporaneous water-rock interactions that promote desorption of 226Ra from organics during hydraulic fracturing.
Hydraulic fracturing of the Marcellus Shale produces wastewaters that are hypersaline and highly enriched in isotopes of radium. Radium is understood to derive from the Marcellus Shale itself, but its source phases and their contributions to wastewater production have not been described. Using sequential extractions and experimental leachates, we characterize two distinct end-members that could contribute Ra to wastewaters, (1) a mineral phase, which hosts labile228Ra and has 226Ra/228Ra atom ratios ~250, and (2) an organic phase, which hosts exchangeable226Ra and has 226Ra/228Ra ~10,000. In leaching experiments we observed rapid extraction of Ra from these phases, with high ionic strength solutions leaching up to 14% of Ra from the shale in just hours. Radium concentrations and 226Ra/228Ra ratios increase with [Ca2+] of the leaching solution, and solutions approaching 1 M Ca2+ produce 226Ra/228Ra ratios compatible with Marcellus wastewaters. In contrast, pure water removes <0.5% of Ra from the shale with low 226Ra/228Ra ratios incompatible with wastewaters. Experimental results and wastewater data together provide a coherent picture, that the distinctive Ra isotopic signature of Marcellus wastewaters results from contemporaneous water-rock interactions that promote desorption of 226Ra from organics during hydraulic fracturing.
Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater
Rogers et al., September 2018
Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater
Jessica D. Rogers, E. Michael Thurman, Imma Ferrer, James Rosenblum, Morgan V. Evans, Paula Mouser, Joseph Ryan (2018). Environmental Science: Processes & Impacts, . 10.1039/C8EM00291F
Abstract:
Polyethylene glycols (PEG) and polypropylene glycols (PPG) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically-fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver Julesburg Basin wells at early and late production. High resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half lives were more rapid for PEG (<0.4-1.1 d) compared to PPG (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight to the differences between degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Polyethylene glycols (PEG) and polypropylene glycols (PPG) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically-fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver Julesburg Basin wells at early and late production. High resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half lives were more rapid for PEG (<0.4-1.1 d) compared to PPG (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight to the differences between degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Improved waste-sourced biocomposite for simultaneous removal of crude oil and heavy metals from synthetic and real oilfield-produced water
Akhbarizadeh et al., September 2018
Improved waste-sourced biocomposite for simultaneous removal of crude oil and heavy metals from synthetic and real oilfield-produced water
Razegheh Akhbarizadeh, Farid Moore, Dariush Mowla, Behnam Keshavarzi (2018). Environmental Science and Pollution Research, . 10.1007/s11356-018-3136-2
Abstract:
Oil- and gas-produced water (PW) which contains various pollutants is an enormous threat to the environment. In this study, a novel low-cost bio-adsorbent was prepared from shrimp shell and acid-activated montmorillonite. The results of FT-IR spectroscopy, energy dispersive X-ray (EDX) analysis, and SEM-EDX technique indicated that the chitosan-activated montmorillonite (CTS-A-MMT) was prepared successfully. The synthesized CTS-A-MMT was applied to remove simultaneously five cationic and anionic metal species and crude oil from synthetic and real oilfield PW. The adsorption data indicated that crude oil and all studied metals (except As) were adsorbed to CTS-A-MMT in a monolayer model (best fitted by Langmuir model), while As adsorption fits well with Freundlich model. Kinetic models’ evaluation demonstrated that the adsorption kinetics of metals on CTS-A-MMT are initially controlled by the chemical reaction (film diffusion) followed by intra-particle diffusion. Application of the prepared CTS-A-MMT in real oilfield PW indicated removal efficiency of 65 to 93% for metals and 87% for crude oil in simultaneous removal experiments. Presence of additional ions in PW decreased the removal of studied metals and crude oil considerably; however, the concentration of the investigated pollutants in treated PW is less than the ocean discharge criteria. It is concluded that the prepared CTS-A-MMT composite is a low-cost and effective adsorbent for treating wastewater contaminated with crude oil and heavy metals (i.e., PW).
Oil- and gas-produced water (PW) which contains various pollutants is an enormous threat to the environment. In this study, a novel low-cost bio-adsorbent was prepared from shrimp shell and acid-activated montmorillonite. The results of FT-IR spectroscopy, energy dispersive X-ray (EDX) analysis, and SEM-EDX technique indicated that the chitosan-activated montmorillonite (CTS-A-MMT) was prepared successfully. The synthesized CTS-A-MMT was applied to remove simultaneously five cationic and anionic metal species and crude oil from synthetic and real oilfield PW. The adsorption data indicated that crude oil and all studied metals (except As) were adsorbed to CTS-A-MMT in a monolayer model (best fitted by Langmuir model), while As adsorption fits well with Freundlich model. Kinetic models’ evaluation demonstrated that the adsorption kinetics of metals on CTS-A-MMT are initially controlled by the chemical reaction (film diffusion) followed by intra-particle diffusion. Application of the prepared CTS-A-MMT in real oilfield PW indicated removal efficiency of 65 to 93% for metals and 87% for crude oil in simultaneous removal experiments. Presence of additional ions in PW decreased the removal of studied metals and crude oil considerably; however, the concentration of the investigated pollutants in treated PW is less than the ocean discharge criteria. It is concluded that the prepared CTS-A-MMT composite is a low-cost and effective adsorbent for treating wastewater contaminated with crude oil and heavy metals (i.e., PW).
Characterizing variable biogeochemical changes during the treatment of produced oilfield waste
Hildenbrand et al., September 2018
Characterizing variable biogeochemical changes during the treatment of produced oilfield waste
Zacariah L. Hildenbrand, Inês C. Santos, Tiffany Liden, Doug D. Carlton Jr, Emmanuel Varona-Torres, Misty S. Martin, Michelle L. Reyes, Safwan R. Mulla, Kevin A. Schug (2018). Science of The Total Environment, 1519-1529. 10.1016/j.scitotenv.2018.03.388
Abstract:
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management.
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management.
Petroleum produced water disposal: Mobility and transport of barium in sandstone and dolomite rocks
Pouyan Ebrahimi and Javier Vilcáez, September 2018
Petroleum produced water disposal: Mobility and transport of barium in sandstone and dolomite rocks
Pouyan Ebrahimi and Javier Vilcáez (2018). Science of The Total Environment, 1054-1063. 10.1016/j.scitotenv.2018.04.067
Abstract:
To assess the risk of underground sources of drinking water contamination by barium (Ba) present in petroleum produced water disposed into deep saline aquifers, we examined the effect of salinity (NaCl), competition of cations (Ca, Mg), temperature (22 and 60°C), and organic fracturing additives (guar gum) on the sorption and transport of Ba in dolomites and sandstones. We found that at typical concentration levels of NaCl, Ca, and Mg in petroleum produced water, Ba sorption in both dolomites and sandstones is inhibited by the formation of Ba(Cl)+ complexes in solution and/or the competition of cations for binding sites of minerals. The inhibition of Ba sorption by both mechanisms is greater in dolomites than in sandstones. This is reflected by a larger decrease in the breakthrough times of Ba through dolomites than through sandstones. We found that the presence of guar gum has little influence on the sorption and thus the transport of Ba in both dolomites and sandstones. Contrary to most heavy metals, Ba sorption in both dolomites and sandstones decreases with increasing temperature, however the reducing effect of temperature on Ba sorption is relevant only at low salinity conditions. Higher inhibition of Ba sorption in dolomites than in sandstones is due to the greater reactivity of dolomite over sandstone. The results of this study which includes the formulation of a reactive transport model and estimation of partition coefficients of Ba in dolomites and sandstones have significant implications in understanding and predicting the mobility and transport of Ba in deep dolomite and sandstone saline aquifers.
To assess the risk of underground sources of drinking water contamination by barium (Ba) present in petroleum produced water disposed into deep saline aquifers, we examined the effect of salinity (NaCl), competition of cations (Ca, Mg), temperature (22 and 60°C), and organic fracturing additives (guar gum) on the sorption and transport of Ba in dolomites and sandstones. We found that at typical concentration levels of NaCl, Ca, and Mg in petroleum produced water, Ba sorption in both dolomites and sandstones is inhibited by the formation of Ba(Cl)+ complexes in solution and/or the competition of cations for binding sites of minerals. The inhibition of Ba sorption by both mechanisms is greater in dolomites than in sandstones. This is reflected by a larger decrease in the breakthrough times of Ba through dolomites than through sandstones. We found that the presence of guar gum has little influence on the sorption and thus the transport of Ba in both dolomites and sandstones. Contrary to most heavy metals, Ba sorption in both dolomites and sandstones decreases with increasing temperature, however the reducing effect of temperature on Ba sorption is relevant only at low salinity conditions. Higher inhibition of Ba sorption in dolomites than in sandstones is due to the greater reactivity of dolomite over sandstone. The results of this study which includes the formulation of a reactive transport model and estimation of partition coefficients of Ba in dolomites and sandstones have significant implications in understanding and predicting the mobility and transport of Ba in deep dolomite and sandstone saline aquifers.
Identification of Proprietary Amino Ethoxylates in Hydraulic Fracturing Wastewater Using Liquid Chromatography/Time-of-Flight Mass Spectrometry with Solid Phase Extraction
Sitterley et al., August 2018
Identification of Proprietary Amino Ethoxylates in Hydraulic Fracturing Wastewater Using Liquid Chromatography/Time-of-Flight Mass Spectrometry with Solid Phase Extraction
Kurban A. Sitterley, Karl G. Linden, Imma Ferrer, E. Michael Thurman (2018). Analytical Chemistry, . 10.1021/acs.analchem.8b02439
Abstract:
This work describes the discovery of amino-polyethylene-glycols, amino-polyethylene-glycol-carboxylates, and amino-polyethylene-glycol-amines in 20 produced water-samples from hydraulic fracturing in the western United States. These compounds, with masses in the range of m/z 120–986, were identified using solid phase extraction and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The polymeric sorbent, Oasis HLB, gave the best recovery for all three ethoxylated surfactants and desalted the samples, which significantly reduced suppression of the mass spectral signal allowing detection and identification. The Kendrick mass defect, mass spectra, fragmentation pathways, and pure standards were used for confirmation. Finally, because these compounds are not explicitly listed in FracFocus reports, rather they are categorized as a proprietary surfactant blend; their identification is an important step in understanding the chemistry, treatment, and possible toxicity of hydraulic fracturing wastewater.
This work describes the discovery of amino-polyethylene-glycols, amino-polyethylene-glycol-carboxylates, and amino-polyethylene-glycol-amines in 20 produced water-samples from hydraulic fracturing in the western United States. These compounds, with masses in the range of m/z 120–986, were identified using solid phase extraction and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The polymeric sorbent, Oasis HLB, gave the best recovery for all three ethoxylated surfactants and desalted the samples, which significantly reduced suppression of the mass spectral signal allowing detection and identification. The Kendrick mass defect, mass spectra, fragmentation pathways, and pure standards were used for confirmation. Finally, because these compounds are not explicitly listed in FracFocus reports, rather they are categorized as a proprietary surfactant blend; their identification is an important step in understanding the chemistry, treatment, and possible toxicity of hydraulic fracturing wastewater.
Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 2. A model reconciling radium extraction with Marcellus wastewater production
Landis et al., August 2018
Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 2. A model reconciling radium extraction with Marcellus wastewater production
Joshua D. Landis, Mukul Sharma, Devon Renock (2018). Chemical Geology, . 10.1016/j.chemgeo.2018.08.001
Abstract:
Radium in hydraulic fracturing wastewaters derives from two isotopically distinct end-members in the shale, labile 228Ra hosted by mineral surfaces (226Ra/228Ra atom ratio ~250) and exchangeable 226Ra hosted by organic surfaces (226Ra/228Ra ~10,000). Here we use mass balance and isotope mixing models to reconcile extraction of Ra from these phases with mechanisms of Marcellus wastewater production. Radium isotopic mass balance requires that the characteristic water-rock ratio between wastewater and shale is exceedingly low, on the order of 0.04, and that this ratio decreases with time during wastewater production. An evolving water-rock interaction drives increasing Ra concentrations (=[Ra]) and 226Ra/228Ra ratios during wastewater production, all mediated by increasing [Ca2+] that favors desorption of 226Ra from organics. Our observations and models of Ra isotope geochemistry are best reconciled with observations of water and salinity mass balance, δ18O, Na-Br-Cl, and 87Sr/86Sr if wastewater is produced by mixing of injected fluids with a limited volume of pore brine (on the order of 13% by volume), accompanied by contemporaneous extraction of excess alkaline earth elements by water-rock exchange. Validated using Ra isotope data, this model attributes the extreme salinity and [Ra] in wastewaters to the progressive, hydrologic enrichment of injected fluids during hydraulic fracturing.
Radium in hydraulic fracturing wastewaters derives from two isotopically distinct end-members in the shale, labile 228Ra hosted by mineral surfaces (226Ra/228Ra atom ratio ~250) and exchangeable 226Ra hosted by organic surfaces (226Ra/228Ra ~10,000). Here we use mass balance and isotope mixing models to reconcile extraction of Ra from these phases with mechanisms of Marcellus wastewater production. Radium isotopic mass balance requires that the characteristic water-rock ratio between wastewater and shale is exceedingly low, on the order of 0.04, and that this ratio decreases with time during wastewater production. An evolving water-rock interaction drives increasing Ra concentrations (=[Ra]) and 226Ra/228Ra ratios during wastewater production, all mediated by increasing [Ca2+] that favors desorption of 226Ra from organics. Our observations and models of Ra isotope geochemistry are best reconciled with observations of water and salinity mass balance, δ18O, Na-Br-Cl, and 87Sr/86Sr if wastewater is produced by mixing of injected fluids with a limited volume of pore brine (on the order of 13% by volume), accompanied by contemporaneous extraction of excess alkaline earth elements by water-rock exchange. Validated using Ra isotope data, this model attributes the extreme salinity and [Ra] in wastewaters to the progressive, hydrologic enrichment of injected fluids during hydraulic fracturing.
Phytoremediation of BTEX and Naphthalene from produced-water spill sites using Poaceae
Shores et al., July 2018
Phytoremediation of BTEX and Naphthalene from produced-water spill sites using Poaceae
Amanda Rose Shores, Brittany Hethcock, Melinda Laituri (2018). International Journal of Phytoremediation, 823-830. 10.1080/15226514.2018.1438352
Abstract:
Surface spills of water produced from hydraulic fracturing can expose soil and groundwater to organics such as BTEX and naphthalene (BTEX&N) as well as high concentrations of salt. As an alternative to soil excavation, we evaluated the effectiveness of BTEX&N soil remediation using 2 grasses present in Colorado. Perennial ryegrass and foxtail barley were grown separately in pots in the greenhouse and exposed to salt or a synthesized produced-water slurry containing relevant levels of salt and BTEX&N. Plant biomass was measured 14 days post-spill, and levels of BTEX&N were quantified using GC/MS for soil, roots, and shoots at day 7 and 14 post-spill. Foxtail barley shoot growth was limited by BTEX&N, whereas perennial ryegrass shoot growth was enhanced by salt but not BTEX&N. While BTEX&N in soil associated with foxtail barley mainly decreased over time, the soil associated with perennial ryegrass mainly saw an increase in BTEX&N with time. However, further research is needed to determine the fate of BTEX&N within grasses and soil.
Surface spills of water produced from hydraulic fracturing can expose soil and groundwater to organics such as BTEX and naphthalene (BTEX&N) as well as high concentrations of salt. As an alternative to soil excavation, we evaluated the effectiveness of BTEX&N soil remediation using 2 grasses present in Colorado. Perennial ryegrass and foxtail barley were grown separately in pots in the greenhouse and exposed to salt or a synthesized produced-water slurry containing relevant levels of salt and BTEX&N. Plant biomass was measured 14 days post-spill, and levels of BTEX&N were quantified using GC/MS for soil, roots, and shoots at day 7 and 14 post-spill. Foxtail barley shoot growth was limited by BTEX&N, whereas perennial ryegrass shoot growth was enhanced by salt but not BTEX&N. While BTEX&N in soil associated with foxtail barley mainly decreased over time, the soil associated with perennial ryegrass mainly saw an increase in BTEX&N with time. However, further research is needed to determine the fate of BTEX&N within grasses and soil.
Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback
Luek et al., June 2018
Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback
Jenna L. Luek, Mourad Harir, Philippe Schmitt-Kopplin, Paula J. Mouser, Michael Gonsior (2018). Water Research, 200-206. 10.1016/j.watres.2018.02.055
Abstract:
The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate.
The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate.
A model for predicting organic compounds concentration change in water associated with horizontal hydraulic fracturing
Ma et al., June 2018
A model for predicting organic compounds concentration change in water associated with horizontal hydraulic fracturing
Lanting Ma, Antonio Hurtado, Sonsoles Eguilior, Juan F. Llamas Borrajo (2018). Science of the Total Environment, 1164-1174. 10.1016/j.scitotenv.2017.12.273
Abstract:
Horizontal drilling and hydraulic fracturing are technologies designed to increase natural gas flow and to improve productivity in low permeability formations. During this drilling operation, tons of flowback and produced water, which contain several organic compounds, return to the surface with a potential risk of influencing the surrounding environment and human health. In order to conduct predictive risk assessments a mathematical model is needed to evaluate organic compound behaviour along the water transportation process as well as concentration changes over time throughout the operational life cycle. A comprehensive model, which fits the experimental data, combining an Organic Matter Transport Dynamic Model with a Two-Compartment First-order Rate Constant (MC) Model has been established to quantify the organic compounds concentrations. This algorithm model incorporates two transportation rates, fast and slow. The results show that the higher the value of the organic carbon partition coefficient (k(oc)) in chemicals, the later the maximum concentration in water will be reached. The maximum concentration percentage would reach up to 90% of the available concentration of each compound in shale formation (whose origin may be associated to drilling fluid, connate water and/or rock matrix) over a sufficiently long period of time. This model could serve as a contribution to enhance monitoring strategy, increase benefits out of optimizing health risk assessment for local residents and provide initial baseline data to further operations. (C) 2018 Elsevier B.V. All rights reserved.
Horizontal drilling and hydraulic fracturing are technologies designed to increase natural gas flow and to improve productivity in low permeability formations. During this drilling operation, tons of flowback and produced water, which contain several organic compounds, return to the surface with a potential risk of influencing the surrounding environment and human health. In order to conduct predictive risk assessments a mathematical model is needed to evaluate organic compound behaviour along the water transportation process as well as concentration changes over time throughout the operational life cycle. A comprehensive model, which fits the experimental data, combining an Organic Matter Transport Dynamic Model with a Two-Compartment First-order Rate Constant (MC) Model has been established to quantify the organic compounds concentrations. This algorithm model incorporates two transportation rates, fast and slow. The results show that the higher the value of the organic carbon partition coefficient (k(oc)) in chemicals, the later the maximum concentration in water will be reached. The maximum concentration percentage would reach up to 90% of the available concentration of each compound in shale formation (whose origin may be associated to drilling fluid, connate water and/or rock matrix) over a sufficiently long period of time. This model could serve as a contribution to enhance monitoring strategy, increase benefits out of optimizing health risk assessment for local residents and provide initial baseline data to further operations. (C) 2018 Elsevier B.V. All rights reserved.
Environmental and Human Health Impacts of Spreading Oil and Gas Wastewater on Roads
Tasker et al., May 2018
Environmental and Human Health Impacts of Spreading Oil and Gas Wastewater on Roads
T. L. Tasker, W. D. Burgos, P. Piotrowski, L. Castillo-Meza, T. A. Blewett, K. B. Ganow, A. Stallworth, P. L. M. Delompré, G. G. Goss, L. B. Fowler, J. P. Vanden Heuvel, F. Dorman, N. R. Warner (2018). Environmental Science & Technology, . 10.1021/acs.est.8b00716
Abstract:
Thirteen states in the United States allow the spreading of O&G wastewaters on roads for deicing or dust suppression. In this study, the potential environmental and human health impacts of this practice are evaluated. Analyses of O&G wastewaters spread on roads in the northeastern, U.S. show that these wastewaters have salt, radioactivity, and organic contaminant concentrations often many times above drinking water standards. Bioassays also indicated that these wastewaters contain organic micropollutants that affected signaling pathways consistent with xenobiotic metabolism and caused toxicity to aquatic organisms like Daphnia magna. The potential toxicity of these wastewaters is a concern as lab experiments demonstrated that nearly all of the metals from these wastewaters leach from roads after rain events, likely reaching ground and surface water. Release of a known carcinogen (e.g., radium) from roads treated with O&G wastewaters has been largely ignored. In Pennsylvania from 2008 to 2014, spreading O&G wastewater on roads released over 4 times more radium to the environment (320 millicuries) than O&G wastewater treatment facilities and 200 times more radium than spill events. Currently, state-by-state regulations do not require radium analyses prior to treating roads with O&G wastewaters. Methods for reducing the potential impacts of spreading O&G wastewaters on roads are discussed.
Thirteen states in the United States allow the spreading of O&G wastewaters on roads for deicing or dust suppression. In this study, the potential environmental and human health impacts of this practice are evaluated. Analyses of O&G wastewaters spread on roads in the northeastern, U.S. show that these wastewaters have salt, radioactivity, and organic contaminant concentrations often many times above drinking water standards. Bioassays also indicated that these wastewaters contain organic micropollutants that affected signaling pathways consistent with xenobiotic metabolism and caused toxicity to aquatic organisms like Daphnia magna. The potential toxicity of these wastewaters is a concern as lab experiments demonstrated that nearly all of the metals from these wastewaters leach from roads after rain events, likely reaching ground and surface water. Release of a known carcinogen (e.g., radium) from roads treated with O&G wastewaters has been largely ignored. In Pennsylvania from 2008 to 2014, spreading O&G wastewater on roads released over 4 times more radium to the environment (320 millicuries) than O&G wastewater treatment facilities and 200 times more radium than spill events. Currently, state-by-state regulations do not require radium analyses prior to treating roads with O&G wastewaters. Methods for reducing the potential impacts of spreading O&G wastewaters on roads are discussed.
Activity concentrations of 238U and 226Ra in two European black shales and their experimentally-derived leachates.
Wilke et al., January 1970
Activity concentrations of 238U and 226Ra in two European black shales and their experimentally-derived leachates.
F. D. H. Wilke, G. Schettler, A. Vieth-Hillebrand, M. Kühn, H. Rothe (1970). Journal of environmental radioactivity, 122-129. 10.1016/j.jenvrad.2018.05.005
Abstract:
Abstract: The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European...
Abstract: The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European...