This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 23, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils
Kookana et al., September 2022
Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils
Rai S. Kookana, Mike Williams, Adrienne Gregg, Adelle Semmler, Jun Du, Simon C. Apte (2022). Environmental Pollution, 119754. 10.1016/j.envpol.2022.119754
Abstract:
Spills of hydraulic fracturing (HF) fluids and of produced water during unconventional gas extraction operations may cause soil contamination. We studied the degradation and microbial toxicity of selected HF chemical components including two biocides (methylisothiozolinone- MIT, chloromethylisothiozolinone- CMIT), a gel-breaker aid (triethanolamine -TEA), and three geogenic chemicals (phenol, m-cresol and p-cresol) in ultrapure water, HF fluid and produced water in five different soil types (surface and subsurface soils). The degradation of the two biocides (in soils treated with HF fluid or ultrapure water) and of the three geogenic chemicals (in soils treated with produced water) was rapid (in all cases DT50 values < 2 days in surface soils). In contrast, the loss of TEA was much slower in soils, especially in those treated with HF fluid (DT50 > 30 days). Sorption coefficients (Koc in L/Kg) in these soils ranged from 71 to 733 for TEA, 64–408 for MIT and 11–72 for CMIT. In terms of soil microbial toxicity, exposure to HF fluid and produced water reduced microbial respiration, albeit temporarily. The overall microbial activities in surface soils contaminated with produced water had fully recovered in most soils. In contrast, the HF fluid addition to soils completely inhibited the nitrification in all soils, with little recovery over the 60 day experimental period. In the case of produced water exposure, three out of five surface soils showed complete recovery in nitrification during the study period. The functional genes for nitrogen fixation (nifH) and carbon cycling (GA1) and microbial community composition (16 S rRNA) were significantly affected by HF fluid in some soils. Overall, the study shows that the HF fluid can have significant detrimental impact on soil microbial functions, especially on nitrogen cycling. More work is needed to identify the exact cause of microbial toxicity in soils contaminated with HF fluid.
Spills of hydraulic fracturing (HF) fluids and of produced water during unconventional gas extraction operations may cause soil contamination. We studied the degradation and microbial toxicity of selected HF chemical components including two biocides (methylisothiozolinone- MIT, chloromethylisothiozolinone- CMIT), a gel-breaker aid (triethanolamine -TEA), and three geogenic chemicals (phenol, m-cresol and p-cresol) in ultrapure water, HF fluid and produced water in five different soil types (surface and subsurface soils). The degradation of the two biocides (in soils treated with HF fluid or ultrapure water) and of the three geogenic chemicals (in soils treated with produced water) was rapid (in all cases DT50 values < 2 days in surface soils). In contrast, the loss of TEA was much slower in soils, especially in those treated with HF fluid (DT50 > 30 days). Sorption coefficients (Koc in L/Kg) in these soils ranged from 71 to 733 for TEA, 64–408 for MIT and 11–72 for CMIT. In terms of soil microbial toxicity, exposure to HF fluid and produced water reduced microbial respiration, albeit temporarily. The overall microbial activities in surface soils contaminated with produced water had fully recovered in most soils. In contrast, the HF fluid addition to soils completely inhibited the nitrification in all soils, with little recovery over the 60 day experimental period. In the case of produced water exposure, three out of five surface soils showed complete recovery in nitrification during the study period. The functional genes for nitrogen fixation (nifH) and carbon cycling (GA1) and microbial community composition (16 S rRNA) were significantly affected by HF fluid in some soils. Overall, the study shows that the HF fluid can have significant detrimental impact on soil microbial functions, especially on nitrogen cycling. More work is needed to identify the exact cause of microbial toxicity in soils contaminated with HF fluid.
Datasets associated with the characterization of produced water and Pecos River water in the Permian Basin, the United States
Jiang et al., August 2022
Datasets associated with the characterization of produced water and Pecos River water in the Permian Basin, the United States
Wenbin Jiang, Xuesong Xu, Ryan Hall, Yanyan Zhang, Kenneth C. Carroll, Frank Ramos, Mark A. Engle, Lu Lin, Huiyao Wang, Matthias Sayer, Pei Xu (2022). Data in Brief, 108443. 10.1016/j.dib.2022.108443
Abstract:
The data in this report are associated with “Characterization of Produced Water and Surrounding Surface Water in the Permian Basin, the United States” (Jiang et al. 2022) and include raw data on produced water (PW) quality and Pecos River water quality in the Permian Basin, which is one of the major oil and gas producing areas in the U.S. The data include 46 samples for PW and 10 samples for Pecos River water. The data include wet chemistry, mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances. The PW samples were collected from five different locations in the Permian Basin. Twenty-four of the PW samples and the ten Pecos River samples were analyzed by the authors. The information for the rest of PW samples (22 samples) was provided by industrial collaborators in the Permian Basin. Statistical analyses were performed on the combined data to obtain Mean, Max, Min, 25th percentile, 50th percentile, and 75th percentile of each analyte.
The data in this report are associated with “Characterization of Produced Water and Surrounding Surface Water in the Permian Basin, the United States” (Jiang et al. 2022) and include raw data on produced water (PW) quality and Pecos River water quality in the Permian Basin, which is one of the major oil and gas producing areas in the U.S. The data include 46 samples for PW and 10 samples for Pecos River water. The data include wet chemistry, mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances. The PW samples were collected from five different locations in the Permian Basin. Twenty-four of the PW samples and the ten Pecos River samples were analyzed by the authors. The information for the rest of PW samples (22 samples) was provided by industrial collaborators in the Permian Basin. Statistical analyses were performed on the combined data to obtain Mean, Max, Min, 25th percentile, 50th percentile, and 75th percentile of each analyte.
Shale gas wastewater characterization: Comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides
Xie et al., July 2022
Shale gas wastewater characterization: Comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides
Wancen Xie, Lun Tian, Peng Tang, Jianyong Cui, Tiejian Wang, Yingming Zhu, Yuhua Bai, Alberto Tiraferri, John C. Crittenden, Baicang Liu (2022). Water Research, 118703. 10.1016/j.watres.2022.118703
Abstract:
Shale gas wastewater (SGW) has great potential for the recovery of valuable elements, but it also poses risks in terms of environmental pollution, with heavy metals and naturally occurring radioactive materials (NORM) being of major concerns. However, many of these species have not been fully determined. For the first time, we identify the elements present in SGW from the Sichuan Basin and consequently draw a comprehensive periodic table, including 71 elements in 15 IUPAC groups. Based on it, we analyze the elements possessing recycling opportunities or with risk potentials. Most of the metal elements in SGW exist at very low concentrations (< 0.2 mg/L), including rare earth elements, revealing poor economic feasibility for recovery. However, salts, strontium (Sr), lithium (Li), and gallium (Ga) are in higher concentrations and have impressive market demands, hence great potential to be recovered. As for environmental burdens related to raw SGW management, salinity, F, Cl, Br, NO3−, Ba, B, and Fe, Cu, As, Mn, V, and Mo pose relatively higher threats in view of the concentrations and toxicity. The radioactivity is also much higher than the safety range, with the gross α activity and gross β activity in SGW ranging from 3.71–83.4 Bq/L, and 1.62–18.7 Bq/L, respectively and radium-226 as the main component. The advanced combined process “pretreatment-disk tube reverse osmosis (DTRO)” with pilot-scale is evaluated for the safe reuse of SGW. This process has high efficiency in the removal of metals and total radioactivity. However, the gross α activity of the effluent (1.3 Bq/L) is slightly higher than the standard for discharge (1 Bq/L), which is thus associated with potential long-term environmental hazards.
Shale gas wastewater (SGW) has great potential for the recovery of valuable elements, but it also poses risks in terms of environmental pollution, with heavy metals and naturally occurring radioactive materials (NORM) being of major concerns. However, many of these species have not been fully determined. For the first time, we identify the elements present in SGW from the Sichuan Basin and consequently draw a comprehensive periodic table, including 71 elements in 15 IUPAC groups. Based on it, we analyze the elements possessing recycling opportunities or with risk potentials. Most of the metal elements in SGW exist at very low concentrations (< 0.2 mg/L), including rare earth elements, revealing poor economic feasibility for recovery. However, salts, strontium (Sr), lithium (Li), and gallium (Ga) are in higher concentrations and have impressive market demands, hence great potential to be recovered. As for environmental burdens related to raw SGW management, salinity, F, Cl, Br, NO3−, Ba, B, and Fe, Cu, As, Mn, V, and Mo pose relatively higher threats in view of the concentrations and toxicity. The radioactivity is also much higher than the safety range, with the gross α activity and gross β activity in SGW ranging from 3.71–83.4 Bq/L, and 1.62–18.7 Bq/L, respectively and radium-226 as the main component. The advanced combined process “pretreatment-disk tube reverse osmosis (DTRO)” with pilot-scale is evaluated for the safe reuse of SGW. This process has high efficiency in the removal of metals and total radioactivity. However, the gross α activity of the effluent (1.3 Bq/L) is slightly higher than the standard for discharge (1 Bq/L), which is thus associated with potential long-term environmental hazards.
Does Unconventional Energy Extraction Generate More Wastewater? A Lifetime Perspective
Xu et al., July 2022
Does Unconventional Energy Extraction Generate More Wastewater? A Lifetime Perspective
Minhong Xu, Yilan Xu, Madhu Khanna (2022). Ecological Economics, 107436. 10.1016/j.ecolecon.2022.107436
Abstract:
Unconventional energy extraction has been accompanied by a faster increase in aggregate wastewater generation compared with conventional practice. Understanding the extent to which it is due to technologies, energy production, or geological characteristics has implications for reducing the associated environmental risks. We analyze how wastewater generation patterns differ between unconventional wells and conventional wells, accounting for differences in well configurations and local geology. Using the 2008–2016 monthly production data from 50,039 wells, we show that unconventional wells generated more wastewater in the first 12 months of production but less cumulative discharge than conventional wells. Unconventional oil wells had a lower wastewater-to-energy ratio throughout their lifetime than their conventional counterparts, whereas no efficiency gap existed among gas wells. We find both an increasing initial discharge gap and growing efficiency gains between unconventional wells and conventional wells starting production in more recent years, likely due to increased penetration and persistent improvements of unconventional technologies over time. Our findings call for targeted strategies to balance the short-term disposal burden and the long-term efficiency gains of unconventional energy extraction.
Unconventional energy extraction has been accompanied by a faster increase in aggregate wastewater generation compared with conventional practice. Understanding the extent to which it is due to technologies, energy production, or geological characteristics has implications for reducing the associated environmental risks. We analyze how wastewater generation patterns differ between unconventional wells and conventional wells, accounting for differences in well configurations and local geology. Using the 2008–2016 monthly production data from 50,039 wells, we show that unconventional wells generated more wastewater in the first 12 months of production but less cumulative discharge than conventional wells. Unconventional oil wells had a lower wastewater-to-energy ratio throughout their lifetime than their conventional counterparts, whereas no efficiency gap existed among gas wells. We find both an increasing initial discharge gap and growing efficiency gains between unconventional wells and conventional wells starting production in more recent years, likely due to increased penetration and persistent improvements of unconventional technologies over time. Our findings call for targeted strategies to balance the short-term disposal burden and the long-term efficiency gains of unconventional energy extraction.
Study of D-limonene as novel green hydraulic fracturing surfactant in shale gas reservoir
Krishnan et al., July 2022
Study of D-limonene as novel green hydraulic fracturing surfactant in shale gas reservoir
Arvindraj Krishnan, Aminah Qayyimah Mohd Aji, Belladonna Maulianda, Dzeti Farhah Mohshim, Reza Barati (2022). Journal of Natural Gas Science and Engineering, 104588. 10.1016/j.jngse.2022.104588
Abstract:
This study focuses on rock-fluid interaction during hydraulic fracturing in shale gas reservoir. Hydraulic fracturing is a well stimulation technique used to create fracture network in reservoirs by connecting the main planar hydraulic fracture with the pre-existing natural fracture. Hydraulic fracturing fluid additives such as surfactants are added into the hydraulic fracturing fluid system to enhance oil and gas productivity by assisting fluid recovery after fracturing. The main objective of this study is to evaluate the effectiveness and formation damage parameters of the proposed novel green surfactant as hydraulic fracturing fluid additive where commercial-chemical based surfactant was studied for comparison purpose. The green surfactant used was D-limonene whereas Sodium Alpha Olefin Sulfonate (AOS) was used as commercial-chemical based surfactant. Thermogravimetric analysis (TGA) was done to ensure the D-limonene can withstand the high reservoir temperature in which the D-limonene had inflection point and onset temperature of 410 °C and 380 °C respectively. Soaking test was then conducted where the shale samples were soaked in hydraulic fracturing fluid for seven days. The outcome of the soaking test was then studied in Scanning Electron Microscopy (SEM) and wettability analysis. The SEM test showed that the average pore size of the soaked shale samples were similar to the original shale sample which indicated minimal to no formation damage caused by the hydraulic fracturing fluid. Besides that, the contact angle test resulted in the distilled water and D-limonene forming a contact angle of 90° and 0° respectively on the shale samples. The AOS formed contact angles between 65° and 75° for the tested concentrations. From the results, the shale sample was found to be oil wet and showed a high affinity towards the D-limonene followed by AOS and distilled water. Higher affinity of the surfactants promoted the desorption of the hydraulic fracturing fluid from the shale surface.
This study focuses on rock-fluid interaction during hydraulic fracturing in shale gas reservoir. Hydraulic fracturing is a well stimulation technique used to create fracture network in reservoirs by connecting the main planar hydraulic fracture with the pre-existing natural fracture. Hydraulic fracturing fluid additives such as surfactants are added into the hydraulic fracturing fluid system to enhance oil and gas productivity by assisting fluid recovery after fracturing. The main objective of this study is to evaluate the effectiveness and formation damage parameters of the proposed novel green surfactant as hydraulic fracturing fluid additive where commercial-chemical based surfactant was studied for comparison purpose. The green surfactant used was D-limonene whereas Sodium Alpha Olefin Sulfonate (AOS) was used as commercial-chemical based surfactant. Thermogravimetric analysis (TGA) was done to ensure the D-limonene can withstand the high reservoir temperature in which the D-limonene had inflection point and onset temperature of 410 °C and 380 °C respectively. Soaking test was then conducted where the shale samples were soaked in hydraulic fracturing fluid for seven days. The outcome of the soaking test was then studied in Scanning Electron Microscopy (SEM) and wettability analysis. The SEM test showed that the average pore size of the soaked shale samples were similar to the original shale sample which indicated minimal to no formation damage caused by the hydraulic fracturing fluid. Besides that, the contact angle test resulted in the distilled water and D-limonene forming a contact angle of 90° and 0° respectively on the shale samples. The AOS formed contact angles between 65° and 75° for the tested concentrations. From the results, the shale sample was found to be oil wet and showed a high affinity towards the D-limonene followed by AOS and distilled water. Higher affinity of the surfactants promoted the desorption of the hydraulic fracturing fluid from the shale surface.
Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse
Liden et al., June 2022
Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse
Tiffany Liden, Zacariah Hildenbrand, Ramón Sánchez, Kevin Schug (2022). Energies, . 10.3390/en15134521
Abstract:
Environmental concerns with unconventional oil and gas development are frequently centered on elevated water usage and the induction of seismic events during waste disposal. Reuse of produced water for subsequent production well stimulation can effectively address these concerns, but the variability among such samples must be well understood. Twenty-four samples of wastewater from unconventional oil and gas development were collected from south and west Texas to assess their variability and feasibility for direct reuse. Bulk metrics were collected, including total organic carbon, total nitrogen, as well as total dissolved and suspended solids. The profiles of pertinent inorganic constituents were also evaluated. Variations were not only seen between regions but also among samples collected from the same region. For example, the average total organic carbon for Eagle Ford samples collected was 700 ± 500 mg/L, while samples collected from the Per-mian Basin featured an average total organic carbon concentration of 600 ± 900 mg/L. The Permian Basin total organic carbon ranged from 38 to 2600 mg/L. The total dissolved solids levels had the same variability between regions, with an average value for Eagle Ford of 20,000 ± 10,000 mg/L and a Permian Basin value of 150,000 ± 40,000 mg/L. However, samples were more reproducible within a given region. Collectively, the data indicate that the direct reuse of raw produced water for subsequent production well development without treatment is not feasible based on the reported reuse thresholds. Unconventional development wastewater samples from the Permian Basin were also compared to produced water values from conventional oil and gas wells in the same region, as reported by the United States Geological Survey. Samples collected in the Permian Basin consistently demonstrated lower ionic strength compared to conventional produced water data.
Environmental concerns with unconventional oil and gas development are frequently centered on elevated water usage and the induction of seismic events during waste disposal. Reuse of produced water for subsequent production well stimulation can effectively address these concerns, but the variability among such samples must be well understood. Twenty-four samples of wastewater from unconventional oil and gas development were collected from south and west Texas to assess their variability and feasibility for direct reuse. Bulk metrics were collected, including total organic carbon, total nitrogen, as well as total dissolved and suspended solids. The profiles of pertinent inorganic constituents were also evaluated. Variations were not only seen between regions but also among samples collected from the same region. For example, the average total organic carbon for Eagle Ford samples collected was 700 ± 500 mg/L, while samples collected from the Per-mian Basin featured an average total organic carbon concentration of 600 ± 900 mg/L. The Permian Basin total organic carbon ranged from 38 to 2600 mg/L. The total dissolved solids levels had the same variability between regions, with an average value for Eagle Ford of 20,000 ± 10,000 mg/L and a Permian Basin value of 150,000 ± 40,000 mg/L. However, samples were more reproducible within a given region. Collectively, the data indicate that the direct reuse of raw produced water for subsequent production well development without treatment is not feasible based on the reported reuse thresholds. Unconventional development wastewater samples from the Permian Basin were also compared to produced water values from conventional oil and gas wells in the same region, as reported by the United States Geological Survey. Samples collected in the Permian Basin consistently demonstrated lower ionic strength compared to conventional produced water data.
Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review
Tao et al., June 2022
Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review
Zhen Tao, Caihong Liu, Qiang He, Haiqing Chang, Jun Ma (2022). Science of The Total Environment, 153887. 10.1016/j.scitotenv.2022.153887
Abstract:
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
A geochemical analysis of produced water(s) from the Wolfcamp formation in the Permian Delaware Basin, western Texas
Bryndzia et al., June 2022
A geochemical analysis of produced water(s) from the Wolfcamp formation in the Permian Delaware Basin, western Texas
L. Taras Bryndzia, Ruarri J. Day-Stirrat, Amie M. Hows, Jean-Philippe Nicot, Anton Nikitin, Ozkan Huvaz (2022). AAPG Bulletin, 1265-1299. 10.1306/01282220180
Abstract:
Water, water, everywhere, Nor any drop to drink!—The Rime of the Ancient Mariner, Samuel Taylor ColeridgeThis study shows that Wolfcamp-produced waters in the Permian Delaware Basin are predominantly in situ Wolfcamp shale formation water with δ18O ∼6.5 ± 0.5‰ (standard mean ocean water) and a salinity as low as 20,000 ppm, consistent with illite-water equilibrium at peak burial conditions.Produced waters in the Delaware Basin have highly radiogenic 87/86Sr ratios of ∼0.7085–0.7095 believed to be sourced from evaporative brines in the Salado salts and overlying shallow Ochoan evaporites. Despite Wolfcamp-produced waters in the Midland Basin routinely having total dissolved solids of up to ∼250,000 ppm, which is double that in the Delaware Basin, chloride-bromide systematics of produced waters show that only minimal halite dissolution was involved in both basins.High-salinity produced waters in the Bone Spring Formation and the upper Wolfcamp formation from the Delaware Basin (∼50,000–125,000 ppm) are mixtures of Wolfcamp formation water and Ochoan evaporative brines that have mixed with local meteoric water. These brines infiltrated deep into the Delaware Basin during uplift of the western edge of the Delaware Basin via permeable Guadalupian and Leonardian sandstone and siltstones.Due to the high illite content in the Wolfcamp shale, the shale-siltstone interface likely behaved as a clay membrane. Salinity differences of up to approximately 100,000 ppm across this interface created potential gradients in ion and water activity (aw), producing an osmotic pressure gradient.Ion diffusion into the shales results in the flow of water out of the shales (high aw) into high-salinity siltstones (low aw). The coupled osmosis–diffusion model predicts high absolute osmotic pressures of up to ∼1680 psi and cocurrent flow of oil and water out of the shale. However, the flow of water out of the shale into adjacent siltstone faces an opposing osmotic pressure. This may explain the high fluid pressures encountered in the Wolfcamp shale and why oil production in the Delaware Basin produces so much water.
Water, water, everywhere, Nor any drop to drink!—The Rime of the Ancient Mariner, Samuel Taylor ColeridgeThis study shows that Wolfcamp-produced waters in the Permian Delaware Basin are predominantly in situ Wolfcamp shale formation water with δ18O ∼6.5 ± 0.5‰ (standard mean ocean water) and a salinity as low as 20,000 ppm, consistent with illite-water equilibrium at peak burial conditions.Produced waters in the Delaware Basin have highly radiogenic 87/86Sr ratios of ∼0.7085–0.7095 believed to be sourced from evaporative brines in the Salado salts and overlying shallow Ochoan evaporites. Despite Wolfcamp-produced waters in the Midland Basin routinely having total dissolved solids of up to ∼250,000 ppm, which is double that in the Delaware Basin, chloride-bromide systematics of produced waters show that only minimal halite dissolution was involved in both basins.High-salinity produced waters in the Bone Spring Formation and the upper Wolfcamp formation from the Delaware Basin (∼50,000–125,000 ppm) are mixtures of Wolfcamp formation water and Ochoan evaporative brines that have mixed with local meteoric water. These brines infiltrated deep into the Delaware Basin during uplift of the western edge of the Delaware Basin via permeable Guadalupian and Leonardian sandstone and siltstones.Due to the high illite content in the Wolfcamp shale, the shale-siltstone interface likely behaved as a clay membrane. Salinity differences of up to approximately 100,000 ppm across this interface created potential gradients in ion and water activity (aw), producing an osmotic pressure gradient.Ion diffusion into the shales results in the flow of water out of the shales (high aw) into high-salinity siltstones (low aw). The coupled osmosis–diffusion model predicts high absolute osmotic pressures of up to ∼1680 psi and cocurrent flow of oil and water out of the shale. However, the flow of water out of the shale into adjacent siltstone faces an opposing osmotic pressure. This may explain the high fluid pressures encountered in the Wolfcamp shale and why oil production in the Delaware Basin produces so much water.
Dissolved organic matter within oil and gas associated wastewaters from U.S. unconventional petroleum plays: Comparisons and consequences for disposal and reuse
McDevitt et al., May 2022
Dissolved organic matter within oil and gas associated wastewaters from U.S. unconventional petroleum plays: Comparisons and consequences for disposal and reuse
Bonnie McDevitt, Aaron M. Jubb, Matthew S. Varonka, Madalyn S. Blondes, Mark A. Engle, Tanya J. Gallegos, Jenna L. Shelton (2022). Science of The Total Environment, 156331. 10.1016/j.scitotenv.2022.156331
Abstract:
Wastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs. Dissolved organic matter (DOM) within produced water represents a challenge for treatment prior to beneficial reuse. High salinities characteristic of produced water, often 10× greater than seawater, coupled to the complex DOM ensemble create analytical obstacles with typical methods. Excitation-emission matrix spectroscopy (EEMS) can rapidly characterize the fluorescent component of DOM with little impact from matrix effects. We applied EEMS to evaluate DOM composition in 18 produced water samples from six North American unconventional petroleum plays. Represented reservoirs include the Eagle Ford Shale (Gulf Coast Basin), Wolfcamp/Cline Shales (Permian Basin), Marcellus Shale and Utica/Point Pleasant (Appalachian Basin), Niobrara Chalk (Denver-Julesburg Basin), and the Bakken Formation (Williston Basin). Results indicate that the relative chromophoric DOM composition in unconventional produced water may distinguish different lithologies, thermal maturity of resource types (e.g., heavy oil vs. dry gas), and fracturing fluid compositions, but is generally insensitive to salinity and DOM concentration. These results are discussed with perspective toward DOM influence on geochemical processes and the potential for targeted organic compound treatment for the reuse of produced water.
Wastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs. Dissolved organic matter (DOM) within produced water represents a challenge for treatment prior to beneficial reuse. High salinities characteristic of produced water, often 10× greater than seawater, coupled to the complex DOM ensemble create analytical obstacles with typical methods. Excitation-emission matrix spectroscopy (EEMS) can rapidly characterize the fluorescent component of DOM with little impact from matrix effects. We applied EEMS to evaluate DOM composition in 18 produced water samples from six North American unconventional petroleum plays. Represented reservoirs include the Eagle Ford Shale (Gulf Coast Basin), Wolfcamp/Cline Shales (Permian Basin), Marcellus Shale and Utica/Point Pleasant (Appalachian Basin), Niobrara Chalk (Denver-Julesburg Basin), and the Bakken Formation (Williston Basin). Results indicate that the relative chromophoric DOM composition in unconventional produced water may distinguish different lithologies, thermal maturity of resource types (e.g., heavy oil vs. dry gas), and fracturing fluid compositions, but is generally insensitive to salinity and DOM concentration. These results are discussed with perspective toward DOM influence on geochemical processes and the potential for targeted organic compound treatment for the reuse of produced water.
Impact of Organic and Volatile Compounds in Produced Water from Unconventional Reservoirs on Direct Contact Membrane Distillation Permeate Quality
Pawar et al., May 2022
Impact of Organic and Volatile Compounds in Produced Water from Unconventional Reservoirs on Direct Contact Membrane Distillation Permeate Quality
Ritesh Pawar, Zhewei Zhang, Andrea Hanson Rhoades, Jens Blotevogel, Radisav D. Vidic (2022). ACS ES&T Water, . 10.1021/acsestwater.1c00496
Abstract:
The expansion of oil and gas extraction from unconventional reservoirs has led to an increase in the amount of produced water that has to be managed by this industry. Direct contact membrane distillation (DCMD) is a promising technology for treatment of produced water to enable water recovery and reduce the environmental footprint of this industry. The feasibility of DCMD for the treatment of highly saline produced water from the Permian Basin in TX with commercially available polyethylene and polytetrafluoroethylene membranes was evaluated in this study. An increase in water recovery by a DCMD system operated in the batch (concentrating) mode led to an increase in permeate conductivity. Partial removal of organic compounds from the produced water by biodegradation, chemical oxidation, and/or activated carbon adsorption could not resolve deterioration in permeate quality, and none of the organics observed in the permeate contributed to its conductivity. The observed increase in permeate conductivity was attributed to the passage of ammonia vapor from the feed side followed by protonation on the permeate side. This study revealed that permeate conductivity may not always be a reliable indicator of membrane wetting and underscores the importance of understanding the interactions between specific solutes and membrane materials.
The expansion of oil and gas extraction from unconventional reservoirs has led to an increase in the amount of produced water that has to be managed by this industry. Direct contact membrane distillation (DCMD) is a promising technology for treatment of produced water to enable water recovery and reduce the environmental footprint of this industry. The feasibility of DCMD for the treatment of highly saline produced water from the Permian Basin in TX with commercially available polyethylene and polytetrafluoroethylene membranes was evaluated in this study. An increase in water recovery by a DCMD system operated in the batch (concentrating) mode led to an increase in permeate conductivity. Partial removal of organic compounds from the produced water by biodegradation, chemical oxidation, and/or activated carbon adsorption could not resolve deterioration in permeate quality, and none of the organics observed in the permeate contributed to its conductivity. The observed increase in permeate conductivity was attributed to the passage of ammonia vapor from the feed side followed by protonation on the permeate side. This study revealed that permeate conductivity may not always be a reliable indicator of membrane wetting and underscores the importance of understanding the interactions between specific solutes and membrane materials.
Characterization of produced water and surrounding surface water in the Permian Basin, the United States
Jiang et al., May 2022
Characterization of produced water and surrounding surface water in the Permian Basin, the United States
Wenbin Jiang, Xuesong Xu, Ryan Hall, Yanyan Zhang, Kenneth C. Carroll, Frank Ramos, Mark A. Engle, Lu Lin, Huiyao Wang, Matthias Sayer, Pei Xu (2022). Journal of Hazardous Materials, 128409. 10.1016/j.jhazmat.2022.128409
Abstract:
A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800–201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800–201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
Environmental stressors alter the susceptibility of microorganisms to biocides in upstream oil and gas systems
Gary E. Jenneman and Kara B. De Leόn, April 2022
Environmental stressors alter the susceptibility of microorganisms to biocides in upstream oil and gas systems
Gary E. Jenneman and Kara B. De Leόn (2022). International Biodeterioration & Biodegradation, 105385. 10.1016/j.ibiod.2022.105385
Abstract:
Upstream oil and gas systems are negatively impacted by microbial activities that produce hydrogen sulfide gas, enhance corrosion rates of metals, and cause costly damage to infrastructure through biofouling. Although alternatives to biocides such as sulfate removal membranes and corrosion resistant coatings and materials have been developed, biocides and inhibitors still provide the main defense against microbial activity. However, the environmental and economic challenges of employing biocides necessitate oil and gas industries devise better strategies for their use and application. Since oil and gas environments represent physically controlled environments with highly stressed microbial communities experiencing episodes of intermittent slow growth and dormancy, one such strategy can take advantage of environmental stressors (e.g., salinity, starvation, oxygen) to enhance biocide efficacy. Although it is generally thought environmental stressors recruit determinants of resistance in bacteria, there are instances where stress decreases the energy or metabolic state of a cell increasing its susceptibility to some biocides. This review examines stressors in oil and gas environments and provides examples where stress can both increase and decrease biocidal susceptibility. By describing how these stressors and biocides impact metabolic activity as well as affect regulation of genes involved in energy production and conversion, this knowledge can be used to develop new strategies that take advantage of vulnerabilities in bacteria to improve biocide efficacy and reduce environmental threats and operator costs.
Upstream oil and gas systems are negatively impacted by microbial activities that produce hydrogen sulfide gas, enhance corrosion rates of metals, and cause costly damage to infrastructure through biofouling. Although alternatives to biocides such as sulfate removal membranes and corrosion resistant coatings and materials have been developed, biocides and inhibitors still provide the main defense against microbial activity. However, the environmental and economic challenges of employing biocides necessitate oil and gas industries devise better strategies for their use and application. Since oil and gas environments represent physically controlled environments with highly stressed microbial communities experiencing episodes of intermittent slow growth and dormancy, one such strategy can take advantage of environmental stressors (e.g., salinity, starvation, oxygen) to enhance biocide efficacy. Although it is generally thought environmental stressors recruit determinants of resistance in bacteria, there are instances where stress decreases the energy or metabolic state of a cell increasing its susceptibility to some biocides. This review examines stressors in oil and gas environments and provides examples where stress can both increase and decrease biocidal susceptibility. By describing how these stressors and biocides impact metabolic activity as well as affect regulation of genes involved in energy production and conversion, this knowledge can be used to develop new strategies that take advantage of vulnerabilities in bacteria to improve biocide efficacy and reduce environmental threats and operator costs.
Towards improved characterization of the fate and impact of hydraulic fracturing chemicals to better secure regional water quality
Jin et al., March 2022
Towards improved characterization of the fate and impact of hydraulic fracturing chemicals to better secure regional water quality
Biao Jin, Min Han, Chen Huang, Hans Peter H. Arp, Gan Zhang (2022). Environmental Science: Processes & Impacts, . 10.1039/D2EM00034B
Abstract:
Hydraulic fracturing (HF) of shale and other permeable rock formations to extract gas and oil is a water-intensive process that returns a significant amount of flowback and produced water (FPW). Due to the complex chemical composition of HF fluids and FPW, this process has led to public concern on the impacts of FPW disposal, spillage and spreading to regional freshwater resources, in particular to shallow groundwater aquifers. To address this, a better understanding of the chemical composition of HF fluid and FPW is needed, as well as the environmental fate properties of the chemical constituents, such as their persistence, mobility and toxicity (PMT) properties. Such research would support risk-based management strategies for the protection of regional water quality, including both the phase-out of problematic chemicals and better hydraulic safeguards against FPW contamination. This article presents recent strategies to advance the assessment and analysis of HF and FPW associated organic chemicals.
Hydraulic fracturing (HF) of shale and other permeable rock formations to extract gas and oil is a water-intensive process that returns a significant amount of flowback and produced water (FPW). Due to the complex chemical composition of HF fluids and FPW, this process has led to public concern on the impacts of FPW disposal, spillage and spreading to regional freshwater resources, in particular to shallow groundwater aquifers. To address this, a better understanding of the chemical composition of HF fluid and FPW is needed, as well as the environmental fate properties of the chemical constituents, such as their persistence, mobility and toxicity (PMT) properties. Such research would support risk-based management strategies for the protection of regional water quality, including both the phase-out of problematic chemicals and better hydraulic safeguards against FPW contamination. This article presents recent strategies to advance the assessment and analysis of HF and FPW associated organic chemicals.
Risk assessment of pollutants in flowback and produced waters and sludge in impoundments
Zhou et al., March 2022
Risk assessment of pollutants in flowback and produced waters and sludge in impoundments
Shangbo Zhou, Shuchan Peng, Zhiqiang Li, Daijun Zhang, Yantao Zhu, Xingquan Li, Mingyu Hong, Weichang Li, Peili Lu (2022). Science of The Total Environment, 152250. 10.1016/j.scitotenv.2021.152250
Abstract:
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10–41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10–41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Draft Genome Sequencing of Three Glutaraldehyde-Tolerant Bacteria from Produced Water from Hydraulic Fracturing
Techtmann et al., February 2022
Draft Genome Sequencing of Three Glutaraldehyde-Tolerant Bacteria from Produced Water from Hydraulic Fracturing
Stephen M. Techtmann, Andrew L. Baldwin, Dotun Aluko, Justin Andersen, Cole Becker, Grace Chandler, Steve Forgrave, Madelyn Jones, Ina Klasner, Jared Martini, Noah Mason, Ryleigh Parsons, Nick Peterson, Erik Reynolds, Lydia Schroeder (2022). Microbiology Resource Announcements, . 10.1128/mra.01232-21
Abstract:
Here, we report the draft genome sequence of three glutaraldehyde-resistant isolates from produced water from hydraulic fracturing operations. The three strains were identified as Marinobacter sp. strain G11, Halomonas sp. strain G15, and Bacillus sp. ...
Here, we report the draft genome sequence of three glutaraldehyde-resistant isolates from produced water from hydraulic fracturing operations. The three strains were identified as Marinobacter sp. strain G11, Halomonas sp. strain G15, and Bacillus sp. ...
Consideration of Potential Technologies for Ammonia Removal and Recovery from Produced Water
Chang et al., February 2022
Consideration of Potential Technologies for Ammonia Removal and Recovery from Produced Water
Haiqing Chang, Mengzhe Lu, Yingyuan Zhu, Zhewei Zhang, Zhiwei Zhou, Ying Liang, Radisav D. Vidic (2022). Environmental Science & Technology, . 10.1021/acs.est.1c08517
Abstract:
Beyond treatment technology: Understanding motivations and barriers for wastewater treatment and reuse in unconventional energy production
Robbins et al., February 2022
Beyond treatment technology: Understanding motivations and barriers for wastewater treatment and reuse in unconventional energy production
Cristian A Robbins, Xuewei Du, Thomas H Bradley, Jason C Quinn, Todd M Bandhauer, Steven A Conrad, Kenneth H Carlson, Tiezheng Tong (2022). Resources, Conservation and Recycling, 106011. 10.1016/j.resconrec.2021.106011
Abstract:
Unconventional oil and gas (UOG) production requires a vast quantity of freshwater while generating substantial volumes of wastewater. Although numerous studies have focused on technology development, other aspects beyond treatment technology, including regulations, economics, system logistics, and public perception, play equally or more important roles collectively in the selection and deployment of UOG wastewater management practices. In this article, we begin with a critical analysis of the motivations that drive UOG wastewater management towards treatment and reuse. Then we examine four main barriers against such a paradigm shift, pertaining to treatment technology, regulatory compliance, economic feasibility, and social acceptance. Despite the need of further improving technology efficiency for UOG wastewater treatment, the lack of established regulatory framework, the uncertainties of economic viability, as well as public resistance, hinder practical implementation of treatment technologies. We highlight the importance of knowledge and collaborative efforts from engineers, regulators, policy makers, economists, and social scientists to address those barriers, and emphasize that future research efforts should be directed at domains well beyond treatment technology. A systems approach and broader collaboration across multiple disciplines is needed to translate technology innovation into solutions that truly improve water sustainability in the context of rising UOG production.
Unconventional oil and gas (UOG) production requires a vast quantity of freshwater while generating substantial volumes of wastewater. Although numerous studies have focused on technology development, other aspects beyond treatment technology, including regulations, economics, system logistics, and public perception, play equally or more important roles collectively in the selection and deployment of UOG wastewater management practices. In this article, we begin with a critical analysis of the motivations that drive UOG wastewater management towards treatment and reuse. Then we examine four main barriers against such a paradigm shift, pertaining to treatment technology, regulatory compliance, economic feasibility, and social acceptance. Despite the need of further improving technology efficiency for UOG wastewater treatment, the lack of established regulatory framework, the uncertainties of economic viability, as well as public resistance, hinder practical implementation of treatment technologies. We highlight the importance of knowledge and collaborative efforts from engineers, regulators, policy makers, economists, and social scientists to address those barriers, and emphasize that future research efforts should be directed at domains well beyond treatment technology. A systems approach and broader collaboration across multiple disciplines is needed to translate technology innovation into solutions that truly improve water sustainability in the context of rising UOG production.
Comparative toxicity of conventional and unconventional oils during rainbow trout (Oncorhynchus mykiss) embryonic development: From molecular to health consequences
Bérubé et al., February 2022
Comparative toxicity of conventional and unconventional oils during rainbow trout (Oncorhynchus mykiss) embryonic development: From molecular to health consequences
Roxanne Bérubé, Molly Lefebvre-Raine, Charles Gauthier, Thibault Bourdin, Pauline Bellot, Gaëlle Triffault-Bouchet, Valérie S. Langlois, Patrice Couture (2022). Chemosphere, 132521. 10.1016/j.chemosphere.2021.132521
Abstract:
Canadian freshwater ecosystems are vulnerable to oil spills from pipelines, which contain mostly diluted bitumen. This study aimed to compare the toxicity of a dilbit and a conventional oil on developing rainbow trout. A total of five exposure scenarios were performed, from 10 to 43 days, using water-accommodated fraction (WAF) with an initial loading of 1:9 oil to water ratio (w/v) in a range of dilutions from 0.32 to 32% WAF, respectively, with TPAH and VOC concentrations from 2.41 to 17.5 μg/L and 7.94–660.99 μg/L, and with or without a recovery period. Following the five exposures, several endpoints were examined, including survivorship, morphometrics, gene expression, and enzymatic activity. Significant mortality rates were measured for the highest WAF concentration of the dilbit in all five exposures (60–100% mortality at 32% WAF). In comparison, the highest WAF concentration of the conventional oil induced significant mortality in three out of the five exposure (from 35 to 100% mortality at 32% WAF). Hatching delays were noted in embryos exposed to both oils. Developmental delays were observed in dilbit-exposed embryos and are suspected to be an indicator of reduced survivorship after hatching. The induced expression of cyp1a remained a reliable biomarker of exposure and of fish malformations, though it did not always predict mortality. Using CYP1A activity in combination with cyp1a may bring more insights in studies of oil risk assessment. This study demonstrates that dilbits are more toxic to early life stages compared to conventional oils and highlights the need to consider the most sensitive stage of development when performing risk assessment studies on oils.
Canadian freshwater ecosystems are vulnerable to oil spills from pipelines, which contain mostly diluted bitumen. This study aimed to compare the toxicity of a dilbit and a conventional oil on developing rainbow trout. A total of five exposure scenarios were performed, from 10 to 43 days, using water-accommodated fraction (WAF) with an initial loading of 1:9 oil to water ratio (w/v) in a range of dilutions from 0.32 to 32% WAF, respectively, with TPAH and VOC concentrations from 2.41 to 17.5 μg/L and 7.94–660.99 μg/L, and with or without a recovery period. Following the five exposures, several endpoints were examined, including survivorship, morphometrics, gene expression, and enzymatic activity. Significant mortality rates were measured for the highest WAF concentration of the dilbit in all five exposures (60–100% mortality at 32% WAF). In comparison, the highest WAF concentration of the conventional oil induced significant mortality in three out of the five exposure (from 35 to 100% mortality at 32% WAF). Hatching delays were noted in embryos exposed to both oils. Developmental delays were observed in dilbit-exposed embryos and are suspected to be an indicator of reduced survivorship after hatching. The induced expression of cyp1a remained a reliable biomarker of exposure and of fish malformations, though it did not always predict mortality. Using CYP1A activity in combination with cyp1a may bring more insights in studies of oil risk assessment. This study demonstrates that dilbits are more toxic to early life stages compared to conventional oils and highlights the need to consider the most sensitive stage of development when performing risk assessment studies on oils.
Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes
Thakur et al., January 2022
Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes
Punam Thakur, Anderson L. Ward, Tanner M. Schaub (2022). Environmental Science and Pollution Research, . 10.1007/s11356-021-18022-z
Abstract:
Over the last decade, there has been a rapid growth in the use of hydraulic fracturing (fracking) to recover unconventional oil and gas in the Permian Basin of southeastern New Mexico (NM) and western Texas. Fracking generates enormous quantities of wastes that contain technologically enhanced naturally occurring radioactive materials (TENORM), which poses risks to human health and the environment because of the relatively high doses of radioactivity. However, very little is known about the chemical composition and radioactivity levels of Permian Basin fracking wastes. Here, we report chemical as well as radiochemical compositions of hydraulic fracking wastes from the Permian Basin. Radium, the major TENORM of interest in unconventional drilling wastes, varied from 19.1 ± 1.2 to 35.9 ± 3.2 Bq/L for 226Ra, 10.3 ± 0.5 to 21.5 ± 1.2 Bq/L for 228Ra, and 2.0 ± 0.05 to 3.7 ± 0.07 Bq/L for 224Ra. In addition to elevated concentrations of radium, these wastewaters also contain elevated concentrations of dissolved salts and divalent cations such as Na+ (31,856–43,000 mg/L), Ca2+ (668–4123 mg/L), Mg2+ (202–2430 mg/L), K+ (148–780 mg/L), Sr2+ (101–260 mg/L), Cl− (5160–66,700 mg/L), SO42− (291–1980 mg/L), Br− (315–596 mg/L), SiO2 (20–32 mg/L), and high total dissolved solid (TDS) of 5000–173,000 mg/L compared to background waters. These elevated levels are of radiological significance and represent a major source of Ra in the environment. The recent discovery of large deposits of recoverable oil and gas in the Permian Basin will lead to more fracking, TENORM generation, and radium releases to the environment. This paper evaluates the potential radiation risks associated with TENORM wastes generated by the oil and gas recovery industry in the Permian Basin.
Over the last decade, there has been a rapid growth in the use of hydraulic fracturing (fracking) to recover unconventional oil and gas in the Permian Basin of southeastern New Mexico (NM) and western Texas. Fracking generates enormous quantities of wastes that contain technologically enhanced naturally occurring radioactive materials (TENORM), which poses risks to human health and the environment because of the relatively high doses of radioactivity. However, very little is known about the chemical composition and radioactivity levels of Permian Basin fracking wastes. Here, we report chemical as well as radiochemical compositions of hydraulic fracking wastes from the Permian Basin. Radium, the major TENORM of interest in unconventional drilling wastes, varied from 19.1 ± 1.2 to 35.9 ± 3.2 Bq/L for 226Ra, 10.3 ± 0.5 to 21.5 ± 1.2 Bq/L for 228Ra, and 2.0 ± 0.05 to 3.7 ± 0.07 Bq/L for 224Ra. In addition to elevated concentrations of radium, these wastewaters also contain elevated concentrations of dissolved salts and divalent cations such as Na+ (31,856–43,000 mg/L), Ca2+ (668–4123 mg/L), Mg2+ (202–2430 mg/L), K+ (148–780 mg/L), Sr2+ (101–260 mg/L), Cl− (5160–66,700 mg/L), SO42− (291–1980 mg/L), Br− (315–596 mg/L), SiO2 (20–32 mg/L), and high total dissolved solid (TDS) of 5000–173,000 mg/L compared to background waters. These elevated levels are of radiological significance and represent a major source of Ra in the environment. The recent discovery of large deposits of recoverable oil and gas in the Permian Basin will lead to more fracking, TENORM generation, and radium releases to the environment. This paper evaluates the potential radiation risks associated with TENORM wastes generated by the oil and gas recovery industry in the Permian Basin.
Strategic Planning for Optimal Management of Different Types of Shale Gas Wastewater
Serrano-Areválo et al., January 2022
Strategic Planning for Optimal Management of Different Types of Shale Gas Wastewater
Tania Itzel Serrano-Areválo, Luis Fernando Lira-Barragán, Mahmoud M. El-Halwagi, José María Ponce-Ortega (2022). ACS Sustainable Chemistry & Engineering, . 10.1021/acssuschemeng.1c06610
Abstract:
This paper presents a mathematical programming approach for the strategic planning of managing wastewater generated by hydraulic fracturing operations in shale gas production. The proposed approach aims to achieve optimal selection of treatment, storage, and reuse activities. The approach also accounts for the variability of wastewater characteristics including the short-term flowback and transition water as well as the longer-term produced water. Because of the different compositions of the pollutants in the various types of wastewater, stream segregation is considered as an option. Furthermore, the model accounts for seasonal variabilities in freshwater availability. Economic and environmental objectives are considered. The economic objective function aims to determine the minimum total cost, which is composed of freshwater, treatment, storage, and transport costs. Credit is given for reused water. The environmental objective focuses on the reduction of freshwater requirements needed for the fracturing step. The proposed model determines trade-offs between cost and water consumption. A case study is presented, and the results show that it is possible to reduce up to 32.43% of freshwater consumed and to reuse up to 12.26% of the total wastewater from wells for fracturing needs.
This paper presents a mathematical programming approach for the strategic planning of managing wastewater generated by hydraulic fracturing operations in shale gas production. The proposed approach aims to achieve optimal selection of treatment, storage, and reuse activities. The approach also accounts for the variability of wastewater characteristics including the short-term flowback and transition water as well as the longer-term produced water. Because of the different compositions of the pollutants in the various types of wastewater, stream segregation is considered as an option. Furthermore, the model accounts for seasonal variabilities in freshwater availability. Economic and environmental objectives are considered. The economic objective function aims to determine the minimum total cost, which is composed of freshwater, treatment, storage, and transport costs. Credit is given for reused water. The environmental objective focuses on the reduction of freshwater requirements needed for the fracturing step. The proposed model determines trade-offs between cost and water consumption. A case study is presented, and the results show that it is possible to reduce up to 32.43% of freshwater consumed and to reuse up to 12.26% of the total wastewater from wells for fracturing needs.
Toxicological characterization of produced water from the Permian Basin
Hu et al., January 2022
Toxicological characterization of produced water from the Permian Basin
Lei Hu, Wenbin Jiang, Xuesong Xu, Huiyao Wang, Kenneth C. Carroll, Pei Xu, Yanyan Zhang (2022). Science of The Total Environment, 152943. 10.1016/j.scitotenv.2022.152943
Abstract:
Produced water (PW) is a hypersaline waste stream generated from the shale oil and gas industry, consisting of numerous anthropogenic and geogenic compounds. Despite prior geochemical characterization, the comprehensive toxicity assessment is lacking for evaluating treatment technologies and the beneficial use of PW. In this study, a suite of in vitro toxicity assays using various aquatic organisms (luminescent bacterium Vibrio fischeri, fish gill cell line RTgill-W1, and microalgae Scenedesmus obliquus) were developed to investigate the toxicological characterizations of PW from the Permian Basin. The exposure to PW, PW inorganic fraction (PW-IF), and PW salt control (PW-SC) at 30– 50% dilutions caused significant toxicological effects in all model species, revealing the high salinity was the foremost toxicological driver in PW. In addition, the toxicity level of PW was usually higher than that of PW-IF, suggesting that organic contaminants might also play a critical role in PW toxicity. When comparing the observed toxicity with associated chemical characterizations in different PW samples, strong correlations were found between them since higher concentrations of contaminants could generally result in higher toxicity towards exposed organisms. Furthermore, the toxicity results from the pretreated PW indicated that those in vitro toxicity assays had different sensitives to the chemical components present in PW. As expected, the combination of multiple pretreatments could lead to a more significant decrease in toxicity compared to the single pretreatment since the mixture of contaminants in PW might exhibit synergistic toxicity. Overall, the current work is expected to enhance our understanding of the potential toxicological impacts of PW to aquatic ecosystems and the relationships between the chemical profiles and observed toxicity in PW, which might be conducive to the establishment of monitoring, remediation, treatment, and reuse protocols for PW.
Produced water (PW) is a hypersaline waste stream generated from the shale oil and gas industry, consisting of numerous anthropogenic and geogenic compounds. Despite prior geochemical characterization, the comprehensive toxicity assessment is lacking for evaluating treatment technologies and the beneficial use of PW. In this study, a suite of in vitro toxicity assays using various aquatic organisms (luminescent bacterium Vibrio fischeri, fish gill cell line RTgill-W1, and microalgae Scenedesmus obliquus) were developed to investigate the toxicological characterizations of PW from the Permian Basin. The exposure to PW, PW inorganic fraction (PW-IF), and PW salt control (PW-SC) at 30– 50% dilutions caused significant toxicological effects in all model species, revealing the high salinity was the foremost toxicological driver in PW. In addition, the toxicity level of PW was usually higher than that of PW-IF, suggesting that organic contaminants might also play a critical role in PW toxicity. When comparing the observed toxicity with associated chemical characterizations in different PW samples, strong correlations were found between them since higher concentrations of contaminants could generally result in higher toxicity towards exposed organisms. Furthermore, the toxicity results from the pretreated PW indicated that those in vitro toxicity assays had different sensitives to the chemical components present in PW. As expected, the combination of multiple pretreatments could lead to a more significant decrease in toxicity compared to the single pretreatment since the mixture of contaminants in PW might exhibit synergistic toxicity. Overall, the current work is expected to enhance our understanding of the potential toxicological impacts of PW to aquatic ecosystems and the relationships between the chemical profiles and observed toxicity in PW, which might be conducive to the establishment of monitoring, remediation, treatment, and reuse protocols for PW.
Examining hydraulic fracturing chemicals: A temporal and comparative analysis
Hill et al., January 2022
Examining hydraulic fracturing chemicals: A temporal and comparative analysis
Christopher B Hill, Om P. Yadav, Eakalak Khan (2022). Water Research, 117878. 10.1016/j.watres.2021.117878
Abstract:
Hydraulic fracturing (HF) remains a current global energy policy issue, and understanding risks to drinking water resources from HF chemicals is an important aspect of this topic. The quantity and quality of disclosed HF chemical information are significant barriers for stakeholders attempting to perform systemic environmental and public health research. A repeatable approach for processing HF chemical disclosure data is provided using United States FracFocus data as a case study. We fill research gaps by examining HF chemical trends between 2014 and 2020 and comparing HF chemicals with a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. In total, 1,244 unique HF chemicals were identified. Compared with EPA's 2016 HF chemical disclosure research, 480 new chemicals are identified, and 318 previously reported chemicals were not observed. The annual unique chemical counts have dropped from 878 to 594 (32.3%) over the research period, while data quality and transparency have increased. Approximately 69.7% of the identified HF ingredients were found in a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. Chemical differences between production types (gas and oil) and states are also reviewed. Our research reveals that the sociotechnical system surrounding HF is dynamic and moving toward fewer and, in general, safer chemicals, for those that are disclosed. This study highlights opportunities for new and updated systemic research regarding HF chemical hazard dynamics and associated risk to drinking water resources.
Hydraulic fracturing (HF) remains a current global energy policy issue, and understanding risks to drinking water resources from HF chemicals is an important aspect of this topic. The quantity and quality of disclosed HF chemical information are significant barriers for stakeholders attempting to perform systemic environmental and public health research. A repeatable approach for processing HF chemical disclosure data is provided using United States FracFocus data as a case study. We fill research gaps by examining HF chemical trends between 2014 and 2020 and comparing HF chemicals with a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. In total, 1,244 unique HF chemicals were identified. Compared with EPA's 2016 HF chemical disclosure research, 480 new chemicals are identified, and 318 previously reported chemicals were not observed. The annual unique chemical counts have dropped from 878 to 594 (32.3%) over the research period, while data quality and transparency have increased. Approximately 69.7% of the identified HF ingredients were found in a list of reference chemicals known or suspected to be in contact (unrelated to HF) with drinking water, food, or cosmetics. Chemical differences between production types (gas and oil) and states are also reviewed. Our research reveals that the sociotechnical system surrounding HF is dynamic and moving toward fewer and, in general, safer chemicals, for those that are disclosed. This study highlights opportunities for new and updated systemic research regarding HF chemical hazard dynamics and associated risk to drinking water resources.
The Impact of Climate Change and Soil Classification on Benzene Concentration in Groundwater Due to Surface Spills of Hydraulic Fracturing Fluids
Almaliki et al., January 1970
The Impact of Climate Change and Soil Classification on Benzene Concentration in Groundwater Due to Surface Spills of Hydraulic Fracturing Fluids
Alaa Jasim Dakheel Almaliki, Mohammed J. K. Bashir, Juan F. Llamas Borrajo (1970). Water, 1202. 10.3390/w14081202
Abstract:
Hydraulic fracturing drilling technology can cause a high risk of surface spill accidents and thus water contamination. Climate change together with the high water demand and rapid increase in industrial and agricultural activities are valued reasons why we should all care about the availability of water resources and protect them from contamination. Hence, the purpose of this study is to estimate the risk associated with a site contaminated with benzene from oil spillage and its potential impact on groundwater. This study focused on investigating the impact of soil variability and water table depth on groundwater contamination. Temperature-dependent parameters, such as soil water content and the diffusion of pollutants, were considered as key input factors for the HYDRUS 1D numerical model to simulate benzene migration through three types of soil (loamy, sandy clay loam, and silt loam) and evaluate its concentration in the water aquifer. The results indicated that an anticipated increase in earth’s average surface temperature by 4 °C due to climate change could lead to a rise in the level of groundwater pollution in the study area by 0.017 mg/L in loamy soil, 0.00046 mg/L in sandy clay loam soil, and 0.00023 mg/L in silt loam soil. It was found that climate change can reduce the amount of benzene absorbed from 10 to 0.07% in loamy soil, 14 to 0.07% in sandy clay loam soil, and 60 to 53% in silt loam soil. The results showed that the soil properties and solute characteristics that depend on the temperature have a major and important role in determining the level of groundwater pollutants.
Hydraulic fracturing drilling technology can cause a high risk of surface spill accidents and thus water contamination. Climate change together with the high water demand and rapid increase in industrial and agricultural activities are valued reasons why we should all care about the availability of water resources and protect them from contamination. Hence, the purpose of this study is to estimate the risk associated with a site contaminated with benzene from oil spillage and its potential impact on groundwater. This study focused on investigating the impact of soil variability and water table depth on groundwater contamination. Temperature-dependent parameters, such as soil water content and the diffusion of pollutants, were considered as key input factors for the HYDRUS 1D numerical model to simulate benzene migration through three types of soil (loamy, sandy clay loam, and silt loam) and evaluate its concentration in the water aquifer. The results indicated that an anticipated increase in earth’s average surface temperature by 4 °C due to climate change could lead to a rise in the level of groundwater pollution in the study area by 0.017 mg/L in loamy soil, 0.00046 mg/L in sandy clay loam soil, and 0.00023 mg/L in silt loam soil. It was found that climate change can reduce the amount of benzene absorbed from 10 to 0.07% in loamy soil, 14 to 0.07% in sandy clay loam soil, and 60 to 53% in silt loam soil. The results showed that the soil properties and solute characteristics that depend on the temperature have a major and important role in determining the level of groundwater pollutants.
A geochemical analysis of produced water(s) from the Wolfcamp Formation in the Permian Delaware Basin, western Texas
Ruarri J. Day-Stirrat L. Taras Bryndzia and Ozkan Huvaz, November 2024
A geochemical analysis of produced water(s) from the Wolfcamp Formation in the Permian Delaware Basin, western Texas
Ruarri J. Day-Stirrat L. Taras Bryndzia and Ozkan Huvaz (2024). AAPG Bulletin, . 10.1306/01282220180
Abstract:
Experiments and modeling of Komvophoron sp. Growth in hydraulic fracturing wastewater
Concas et al., December 2021
Experiments and modeling of Komvophoron sp. Growth in hydraulic fracturing wastewater
Alessandro Concas, Giovanni Antonio Lutzu, Nurhan Turgut Dunford (2021). Chemical Engineering Journal, 131299. 10.1016/j.cej.2021.131299
Abstract:
The high management cost of wastewater generated during oil and gas production using hydraulic fracturing technology necessitates economically viable alternative technologies for remediation and reuse. In this study, an Oklahoma native microalgae strain, Komvophoron sp., was grown in four different flowback and produced water samples generated during hydraulic fracturing. Biomass production profile and pollutant removal efficiency of the strain were evaluated. The experimental data demonstrated that this strain was able to grow in all wastewater samples examined when suitable light intensity and CO2 flow rate were provided. Biomass productivity of the strain varied from 5.5 to 12 g m−3 day−1 depending on the wastewater sample used in the cultivation experiments. Very high nitrogen and phosphorus removal from the growth medium, up to 99 and 63%, respectively, could be achieved by growing and harvesting algal biomass in the wastewater samples. A mathematical model developed based on pH, light intensity and CO2 enriched air flow rate as system variables well described the experimental biomass productivity and pollutant removal efficiency data. The proposed mathematical model was successfully used to identify sets of operating conditions which would maximize biomass productivity and macronutrient removal efficiencies. Hence, the model developed in this study is a useful tool to assess technical viability and design of an efficient algal wastewater remediation process to reduce the impact of hydraulic fracturing on environment while producing biomass that can be converted to industrial bio-products including biofuels.
The high management cost of wastewater generated during oil and gas production using hydraulic fracturing technology necessitates economically viable alternative technologies for remediation and reuse. In this study, an Oklahoma native microalgae strain, Komvophoron sp., was grown in four different flowback and produced water samples generated during hydraulic fracturing. Biomass production profile and pollutant removal efficiency of the strain were evaluated. The experimental data demonstrated that this strain was able to grow in all wastewater samples examined when suitable light intensity and CO2 flow rate were provided. Biomass productivity of the strain varied from 5.5 to 12 g m−3 day−1 depending on the wastewater sample used in the cultivation experiments. Very high nitrogen and phosphorus removal from the growth medium, up to 99 and 63%, respectively, could be achieved by growing and harvesting algal biomass in the wastewater samples. A mathematical model developed based on pH, light intensity and CO2 enriched air flow rate as system variables well described the experimental biomass productivity and pollutant removal efficiency data. The proposed mathematical model was successfully used to identify sets of operating conditions which would maximize biomass productivity and macronutrient removal efficiencies. Hence, the model developed in this study is a useful tool to assess technical viability and design of an efficient algal wastewater remediation process to reduce the impact of hydraulic fracturing on environment while producing biomass that can be converted to industrial bio-products including biofuels.
Oil and Gas Produced Water Reuse: Opportunities, Treatment Needs, and Challenges
Cooper et al., December 2021
Oil and Gas Produced Water Reuse: Opportunities, Treatment Needs, and Challenges
Carolyn M. Cooper, James McCall, Sean C. Stokes, Cameron McKay, Matthew J. Bentley, James S. Rosenblum, Tamzin A. Blewett, Zhe Huang, Ariel Miara, Michael Talmadge, Anna Evans, Kurban A. Sitterley, Parthiv Kurup, Jennifer R. Stokes-Draut, Jordan Macknick, Thomas Borch, Tzahi Y. Cath, Lynn E. Katz (2021). ACS ES&T Engineering, . 10.1021/acsestengg.1c00248
Abstract:
Advances in water treatment technologies paired with potential restrictions on oil and gas (O the sole major breakthrough has been in the development of salt-tolerant fracturing chemicals that allow for reuse of produced water for fracking operations. Guided research should assist in the development of fit-for-purpose solutions to maximize the reuse of treated produced water. This is exemplified by the case studies presented here that detail currently operating treatment facilities for reclamation and reuse of produced water.
Advances in water treatment technologies paired with potential restrictions on oil and gas (O the sole major breakthrough has been in the development of salt-tolerant fracturing chemicals that allow for reuse of produced water for fracking operations. Guided research should assist in the development of fit-for-purpose solutions to maximize the reuse of treated produced water. This is exemplified by the case studies presented here that detail currently operating treatment facilities for reclamation and reuse of produced water.
Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism
Zhang et al., December 2021
Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism
Anlong Zhang, Chuyue Gao, Tiantian Chen, Yili Xie, Xianbao Wang (2021). Bioresource Technology, 126538. 10.1016/j.biortech.2021.126538
Abstract:
The effects of salinity shock on the anaerobic treatment of fracturing wastewater regarding chemical oxygen demand (COD) removal performance, sludge characteristics and microbial community were investigated. Results showed COD removal efficiency decreased from 76.0% to 69.1%, 65.6%, 33.7% and 21.9% with the increase of salinity from 2.5 g/L to 10, 15, 25 and 45 g/L, respectively. The cumulative biogas production decreased by 13.8%–81.1% when salinity increased to 15–85 g/L. The increase of salinity led to the decline in particle size of granular sludge, and the activity of granular sludge, including SMA, coenzyme F420 and dehydrogenase, was inhibited significantly. Flow cytometry indicated the percentage of damaged cells in granular sludge gradually increased with the increase of salinity. Sequence analysis illustrated that microbial community structure in anaerobic digestion reactor was influenced by the salinity, high salinity reduced the diversity of archaea and decreased the abundance of methanogens, especially Methanosaeta.
The effects of salinity shock on the anaerobic treatment of fracturing wastewater regarding chemical oxygen demand (COD) removal performance, sludge characteristics and microbial community were investigated. Results showed COD removal efficiency decreased from 76.0% to 69.1%, 65.6%, 33.7% and 21.9% with the increase of salinity from 2.5 g/L to 10, 15, 25 and 45 g/L, respectively. The cumulative biogas production decreased by 13.8%–81.1% when salinity increased to 15–85 g/L. The increase of salinity led to the decline in particle size of granular sludge, and the activity of granular sludge, including SMA, coenzyme F420 and dehydrogenase, was inhibited significantly. Flow cytometry indicated the percentage of damaged cells in granular sludge gradually increased with the increase of salinity. Sequence analysis illustrated that microbial community structure in anaerobic digestion reactor was influenced by the salinity, high salinity reduced the diversity of archaea and decreased the abundance of methanogens, especially Methanosaeta.
Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study
Scanlon et al., December 2021
Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study
Bridget R. Scanlon, Robert C. Reedy, Brad D. Wolaver (2021). Science of The Total Environment, 152306. 10.1016/j.scitotenv.2021.152306
Abstract:
Quantifying impacts of unconventional oil and gas production on water resources and aquatic habitats is critical for developing management approaches for mitigation. The study objective was to evaluate impacts of oil and gas production on groundwater and surface water and assess approaches to reduce these impacts using the Permian Basin as a case study. Water demand for hydraulic fracturing (HF) was compared to water supplies. We also examined contamination from surface spills. Results show that water demand for HF peaked in 2019, representing ~28% of water use in non-mining sectors. Most HF water was sourced from aquifers with ~1100 wells drilled in the Ogallala aquifer in 2019. The State monitoring network did not show regional groundwater depletion but was not sufficiently dense to address local impacts. Groundwater depletion is more critical in the western Delaware Basin within the Permian Basin because groundwater is connected to large flowing springs (e.g. San Solomon Springs) and to the Pecos River which has total dissolved solids ranging from ~3000 to 14,000 mg/L. Most produced water (70–80%) is disposed in shallow geologic units that could result in overpressuring and potential groundwater contamination from leakage through ~70,000 abandoned oil wells, including orphaned wells. While there is little evidence of leakage from abandoned wells, the state monitoring system was not designed to assess leakage from these wells. Oil spill counts totaled ~11,000 in the Permian (2009–2018). Approaches to mitigating adverse impacts on water management include reuse of PW for HF; however, there is an excess of PW in the Delaware Basin. Treatment and reuse in other sectors outside of oil and gas are also possibilities. Data gaps include reporting of water sources for HF, PW quality data required for assessing treatment and reuse, subsurface disposal capacity for accommodating PW, and spills from PW in Texas.
Quantifying impacts of unconventional oil and gas production on water resources and aquatic habitats is critical for developing management approaches for mitigation. The study objective was to evaluate impacts of oil and gas production on groundwater and surface water and assess approaches to reduce these impacts using the Permian Basin as a case study. Water demand for hydraulic fracturing (HF) was compared to water supplies. We also examined contamination from surface spills. Results show that water demand for HF peaked in 2019, representing ~28% of water use in non-mining sectors. Most HF water was sourced from aquifers with ~1100 wells drilled in the Ogallala aquifer in 2019. The State monitoring network did not show regional groundwater depletion but was not sufficiently dense to address local impacts. Groundwater depletion is more critical in the western Delaware Basin within the Permian Basin because groundwater is connected to large flowing springs (e.g. San Solomon Springs) and to the Pecos River which has total dissolved solids ranging from ~3000 to 14,000 mg/L. Most produced water (70–80%) is disposed in shallow geologic units that could result in overpressuring and potential groundwater contamination from leakage through ~70,000 abandoned oil wells, including orphaned wells. While there is little evidence of leakage from abandoned wells, the state monitoring system was not designed to assess leakage from these wells. Oil spill counts totaled ~11,000 in the Permian (2009–2018). Approaches to mitigating adverse impacts on water management include reuse of PW for HF; however, there is an excess of PW in the Delaware Basin. Treatment and reuse in other sectors outside of oil and gas are also possibilities. Data gaps include reporting of water sources for HF, PW quality data required for assessing treatment and reuse, subsurface disposal capacity for accommodating PW, and spills from PW in Texas.
Efficacy of oil and gas produced water as a dust suppressant
Stallworth et al., December 2021
Efficacy of oil and gas produced water as a dust suppressant
Audrey M. Stallworth, Eric H. Chase, Bonnie McDevitt, Katherine K. Marak, Miriam Arak Freedman, Robin Taylor Wilson, William D. Burgos, Nathaniel R. Warner (2021). Science of The Total Environment, 149347. 10.1016/j.scitotenv.2021.149347
Abstract:
The effectiveness of oil and gas produced water (OGPW) applied to unpaved roads to reduce particulate matter (PM10) generation has not been well-characterized. Here we quantify the efficacy of OGPW compared to commercial and alternative byproducts as dust suppressants applied to unpaved roads and estimate efficacy of a dust suppressant extrapolated from both lab experiments and published data for OGPW across U.S. states. Both treated and untreated OGPW, simulated brines, and commercial dust suppressants were characterized by major and trace element composition and then applied to road aggregate in the laboratory. PM10 generation after treatment was quantified, both before and after simulated rain events to assess the need for multiple applications. We found the dust suppression efficacy of all OGPW to be less than commercial products and alternative byproducts such as waste soybean oil. In addition, OGPW lost efficacy following simulated rain events, which would require repeated applications of OGPW to maintain dust suppression. The dust suppression efficacy of OGPW can be estimated based on two chemical measurements, the sodium absorption ratio (SAR) and the total dissolved solids (TDS). OGPW with the lowest SAR and highest TDS performed best as dust suppressants while high SAR and lower TDS led to greater dust generation.
The effectiveness of oil and gas produced water (OGPW) applied to unpaved roads to reduce particulate matter (PM10) generation has not been well-characterized. Here we quantify the efficacy of OGPW compared to commercial and alternative byproducts as dust suppressants applied to unpaved roads and estimate efficacy of a dust suppressant extrapolated from both lab experiments and published data for OGPW across U.S. states. Both treated and untreated OGPW, simulated brines, and commercial dust suppressants were characterized by major and trace element composition and then applied to road aggregate in the laboratory. PM10 generation after treatment was quantified, both before and after simulated rain events to assess the need for multiple applications. We found the dust suppression efficacy of all OGPW to be less than commercial products and alternative byproducts such as waste soybean oil. In addition, OGPW lost efficacy following simulated rain events, which would require repeated applications of OGPW to maintain dust suppression. The dust suppression efficacy of OGPW can be estimated based on two chemical measurements, the sodium absorption ratio (SAR) and the total dissolved solids (TDS). OGPW with the lowest SAR and highest TDS performed best as dust suppressants while high SAR and lower TDS led to greater dust generation.
Sorption and transformation of biocides from hydraulic fracturing in the Marcellus Shale: a review
Consolazio et al., November 2021
Sorption and transformation of biocides from hydraulic fracturing in the Marcellus Shale: a review
Nizette Consolazio, J. Alexandra Hakala, Gregory V. Lowry, Athanasios K. Karamalidis (2021). Environmental Chemistry Letters, . 10.1007/s10311-021-01352-2
Abstract:
Biocides are applied as chemical additives in hydraulic fracturing fluids to control subsurface microbial activity. When biocides are released into the subsurface, their fate is controlled by sorption to solids and heterogeneous electron transfer (redox) reactions at the mineral–fluid interface. The ability to predict whether produced water may contain unreacted biocides, or biocide–mineral transformation products, is relevant for defining optimal produced water treatment and beneficial use approaches. This article reviews major minerals that may impact biocide sorption and reactivity in the Marcellus Shale, with a specific focus on biocide–mineral interactions. The chemical and physical properties of quartz, illite, chlorite, pyrite, calcite and dolomite are presented and their reactions with organic compounds structurally similar to biocides are identified. Oxygen-containing functional groups are common among organic biocides, where the carbonyl (–C=O) substructure is integrated into many biocides. Cationic surfactant biocides are expected to sorb to every mineral. Clays, because of their negative surface charge and comparatively high surface area, make excellent sorbents of positively charged biocides. Sorption to organic matter is expected to be limited due to the very polar groups found in biocides. Pyrite is most likely to cause transformation of biocides due to its ability to reduce halogenated organic compounds and initiate Fenton-like reactions, which generate non-specific hydroxyl radicals that react with biocides. Carbonate minerals may act as potential chemisorption sites for biocides possessing a carbonyl group adjacent to another electronegative group. However, the rapid dissolution of this mineral limits its persistence at the mineral–fluid interface. These potential sorption versus transformation reactions can be applied to predict biocide fate in unconventional oil and gas reservoirs and, where appropriate, other subsurface reservoirs used for energy resource extraction or storage.
Biocides are applied as chemical additives in hydraulic fracturing fluids to control subsurface microbial activity. When biocides are released into the subsurface, their fate is controlled by sorption to solids and heterogeneous electron transfer (redox) reactions at the mineral–fluid interface. The ability to predict whether produced water may contain unreacted biocides, or biocide–mineral transformation products, is relevant for defining optimal produced water treatment and beneficial use approaches. This article reviews major minerals that may impact biocide sorption and reactivity in the Marcellus Shale, with a specific focus on biocide–mineral interactions. The chemical and physical properties of quartz, illite, chlorite, pyrite, calcite and dolomite are presented and their reactions with organic compounds structurally similar to biocides are identified. Oxygen-containing functional groups are common among organic biocides, where the carbonyl (–C=O) substructure is integrated into many biocides. Cationic surfactant biocides are expected to sorb to every mineral. Clays, because of their negative surface charge and comparatively high surface area, make excellent sorbents of positively charged biocides. Sorption to organic matter is expected to be limited due to the very polar groups found in biocides. Pyrite is most likely to cause transformation of biocides due to its ability to reduce halogenated organic compounds and initiate Fenton-like reactions, which generate non-specific hydroxyl radicals that react with biocides. Carbonate minerals may act as potential chemisorption sites for biocides possessing a carbonyl group adjacent to another electronegative group. However, the rapid dissolution of this mineral limits its persistence at the mineral–fluid interface. These potential sorption versus transformation reactions can be applied to predict biocide fate in unconventional oil and gas reservoirs and, where appropriate, other subsurface reservoirs used for energy resource extraction or storage.
Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater?
Tang et al., November 2021
Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater?
Peng Tang, Mengchao Shi, Xin Li, Yongli Zhang, Dong Lin, Tong Li, Weiming Zhang, Alberto Tiraferri, Baicang Liu (2021). Science of The Total Environment, 149181. 10.1016/j.scitotenv.2021.149181
Abstract:
Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (−14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.
Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (−14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.
Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry
Dardor et al., November 2021
Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry
Dareen Dardor, Mashael Al Maas, Joel Minier-Matar, Arnold Janson, Ahmed Abdel-Wahab, Ho Kyong Shon, Samer Adham (2021). Desalination, 115219. 10.1016/j.desal.2021.115219
Abstract:
Pressure-retarded osmosis (PRO) is a promising membrane technology for harnessing the osmotic energy of saline solutions. PRO is typically considered with seawater/river water pairings however greater energy can be recovered from hypersaline solutions including produced water (PW) from the petroleum industry. One of the major challenges facing the utilization of hypersaline PW is its high fouling propensity on membranes. In this unique experimental evaluation, real PW from different sites was pretreated to varying degrees: i) minimal, ii) intermediate, and iii) extensive. The treated effluent was subsequently used for PRO testing and fouling rates were assessed for different membrane configurations over multiple cycles. Commercial grade flat sheet (FLS) coupons and novel hollow fiber (HF) modules were compared to validate the lower fouling propensity of HF membranes in PRO application. When minimally pretreated PW (10-micron cartridge filtration (CF)) was tested in FLS mode, severe membrane fouling occurred and the PRO flux decreased by 60%. In contrast, HF modules showed <1% flux decrease under both minimal and intermediate pretreatment schemes. Extensive pretreatment (1-micron CF, dissolved air flotation (DAF), powdered activated carbon, and microfiltration) reduced FLS PRO flux decline to <1%. These results confirm that PW can be treated to suitable levels for PRO application to avoid membrane fouling. Further validation of these pretreatment methods requires long term pilot testing and techno-economic assessment.
Pressure-retarded osmosis (PRO) is a promising membrane technology for harnessing the osmotic energy of saline solutions. PRO is typically considered with seawater/river water pairings however greater energy can be recovered from hypersaline solutions including produced water (PW) from the petroleum industry. One of the major challenges facing the utilization of hypersaline PW is its high fouling propensity on membranes. In this unique experimental evaluation, real PW from different sites was pretreated to varying degrees: i) minimal, ii) intermediate, and iii) extensive. The treated effluent was subsequently used for PRO testing and fouling rates were assessed for different membrane configurations over multiple cycles. Commercial grade flat sheet (FLS) coupons and novel hollow fiber (HF) modules were compared to validate the lower fouling propensity of HF membranes in PRO application. When minimally pretreated PW (10-micron cartridge filtration (CF)) was tested in FLS mode, severe membrane fouling occurred and the PRO flux decreased by 60%. In contrast, HF modules showed <1% flux decrease under both minimal and intermediate pretreatment schemes. Extensive pretreatment (1-micron CF, dissolved air flotation (DAF), powdered activated carbon, and microfiltration) reduced FLS PRO flux decline to <1%. These results confirm that PW can be treated to suitable levels for PRO application to avoid membrane fouling. Further validation of these pretreatment methods requires long term pilot testing and techno-economic assessment.
Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening
Faber et al., November 2021
Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening
Ann-Hélène Faber, Andrea M. Brunner, Milou M. L. Dingemans, Kirsten A. Baken, Stefan A. E. Kools, Paul P. Schot, Pim de Voogt, Annemarie P. van Wezel (2021). Science of The Total Environment, 148727. 10.1016/j.scitotenv.2021.148727
Abstract:
There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either ‘conventional’ or ‘green’, as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the ‘green’ fluids are less harmful than the ‘conventional’ ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the ‘green’ and ‘conventional’ fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.
There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either ‘conventional’ or ‘green’, as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the ‘green’ fluids are less harmful than the ‘conventional’ ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the ‘green’ and ‘conventional’ fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.
Toxic effects of shale gas fracturing flowback fluid on microbial communities in polluted soil
Mei et al., November 2021
Toxic effects of shale gas fracturing flowback fluid on microbial communities in polluted soil
Xudong Mei, Fanhai Zeng, FengLin Xu, HaiFeng Su (2021). Environmental Monitoring and Assessment, 786. 10.1007/s10661-021-09544-7
Abstract:
A large amount of shale gas fracturing flowback fluid (FFBF) from the process of shale gas exploitation causes obvious ecological harm to health of soil and water. However, biological hazard of soil microbial populations by fracturing flowback fluid remains rarely reported. In this study, the microbiological compositions were assessed via analyzing diversity of microbial populations. The results showed significant differences between polluted soil by fracturing flowback fluid and unpolluted soil in different pH and temperature conditions. And then, the microbe-index of biological integrity (M-IBI) was used to evaluate the toxicity of the fracturing flowback fluid based on analysis of microbial integrity. The results showed that polluted soil lacks key microbial species known to be beneficial to soil health, including denitrifying bacteria and cellulose-decomposing bacteria, and 35 °C is a critical value for estimating poor and sub-healthy level of damage to microbial integrity by fracturing flowback fluid. Our results provide a valuable reference for the evaluation of soil damage by fracturing flowback fluid.
A large amount of shale gas fracturing flowback fluid (FFBF) from the process of shale gas exploitation causes obvious ecological harm to health of soil and water. However, biological hazard of soil microbial populations by fracturing flowback fluid remains rarely reported. In this study, the microbiological compositions were assessed via analyzing diversity of microbial populations. The results showed significant differences between polluted soil by fracturing flowback fluid and unpolluted soil in different pH and temperature conditions. And then, the microbe-index of biological integrity (M-IBI) was used to evaluate the toxicity of the fracturing flowback fluid based on analysis of microbial integrity. The results showed that polluted soil lacks key microbial species known to be beneficial to soil health, including denitrifying bacteria and cellulose-decomposing bacteria, and 35 °C is a critical value for estimating poor and sub-healthy level of damage to microbial integrity by fracturing flowback fluid. Our results provide a valuable reference for the evaluation of soil damage by fracturing flowback fluid.
Can a compact biological system be used for real hydraulic fracturing wastewater treatment?
Qian et al., November 2021
Can a compact biological system be used for real hydraulic fracturing wastewater treatment?
Guangsheng Qian, Pu Liu, Li Wei, Hamish Mackey, Tianwei Hao (2021). Science of The Total Environment, 151524. 10.1016/j.scitotenv.2021.151524
Abstract:
Hydraulic fracturing wastewater (HFW), a byproduct of hydraulic fracturing oil extraction, contains a complex mixture of oil, aldehydes, and benzene compounds. Efficient and eco-friendly HFW treatment means are critical for the oil extraction industry, particularly in developing countries. In this study, two biological processes namely an anaerobic/anoxic/moving bed biofilm reactor (A2-MBBR) and an A2-MBBR with a microfiltration membrane (A2-MFMBBR) were established, and assessed for the real HFW treatment. Removal efficiencies of chemical oxygen demand (COD) and NH4+-N were over 92% and 95%, respectively, in both processes with a hydraulic retention time of 72 h. The majority of organic compounds in both systems identified by GC–MS were degraded in the anaerobic units. In comparison, A2-MFMBBR demonstrated higher removal efficiencies for oil, total suspended solids, and complex compounds. The average relative abundances of refractory compound degrading bacteria were 43.4% and 51.6% in the A2-MBBR and A2-MFMBBR, respectively, which was consistent with the COD and oil removal, and suggested that the MBR could maintain a high diversity of microorganisms and contribute to deep recalcitrant organics degradation. This study sheds light on the potential of using a compact biological process for the real HFW treatment.
Hydraulic fracturing wastewater (HFW), a byproduct of hydraulic fracturing oil extraction, contains a complex mixture of oil, aldehydes, and benzene compounds. Efficient and eco-friendly HFW treatment means are critical for the oil extraction industry, particularly in developing countries. In this study, two biological processes namely an anaerobic/anoxic/moving bed biofilm reactor (A2-MBBR) and an A2-MBBR with a microfiltration membrane (A2-MFMBBR) were established, and assessed for the real HFW treatment. Removal efficiencies of chemical oxygen demand (COD) and NH4+-N were over 92% and 95%, respectively, in both processes with a hydraulic retention time of 72 h. The majority of organic compounds in both systems identified by GC–MS were degraded in the anaerobic units. In comparison, A2-MFMBBR demonstrated higher removal efficiencies for oil, total suspended solids, and complex compounds. The average relative abundances of refractory compound degrading bacteria were 43.4% and 51.6% in the A2-MBBR and A2-MFMBBR, respectively, which was consistent with the COD and oil removal, and suggested that the MBR could maintain a high diversity of microorganisms and contribute to deep recalcitrant organics degradation. This study sheds light on the potential of using a compact biological process for the real HFW treatment.
Oil and gas wastewater as road treatment: radioactive material exposure implications at the residential lot and block scale
Bain et al., November 2021
Oil and gas wastewater as road treatment: radioactive material exposure implications at the residential lot and block scale
Daniel J Bain, Tetiana Cantlay, Brittany Garman, John Stolz (2021). Environmental Research Communications, . 10.1088/2515-7620/ac35be
Abstract:
Abstract The resurgence of oil and gas extraction in the Appalachian Basin has resulted in an excess of oil and gas brines in Pennsylvania, West Virginia, and Ohio. Primarily driven by unconventional development, this expansion has also impacted conventional wells and consequently, created economic pressure to develop effective and cheap disposal options. Using brine as a road treatment, directly or as a processed deicer, however, creates substantial concern that naturally occurring radioactive material in the brines can contaminate roads and road-side areas. Current decision making is based on risk exposure scenarios developed by regulatory agencies based on recreational users in rural areas and exposures to drivers during a typical commute. These scenarios are not appropriate for evaluating exposures to residential deicer users or people living near treated streets. More appropriate exposure scenarios were developed in this work and exposures predicted with these models based on laboratory measurements and literature data. Exposure scenarios currently used for regulatory assessment of brine road treatment result in predicted exposures of 0.4-0.6 mrem/year. Residential exposures predicted by the scenarios developed in this work are 4.6 mrem/year. If the maximum range of near-road soil radium concentrations observed in the region is used in this residential scenario (60 pCi/g 226 Ra, 50 pCi/g 228 Ra), residents living near these roads would be exposed to an estimated 296 mrems/year, above regulatory exposure thresholds used in nuclear facility siting assessments. These results underline the urgent need to clarify exposure risks from the use of oil and gas brines as a road treatment, particularly given the existing disparities in the distribution of road impacts across socioeconomic status.
Abstract The resurgence of oil and gas extraction in the Appalachian Basin has resulted in an excess of oil and gas brines in Pennsylvania, West Virginia, and Ohio. Primarily driven by unconventional development, this expansion has also impacted conventional wells and consequently, created economic pressure to develop effective and cheap disposal options. Using brine as a road treatment, directly or as a processed deicer, however, creates substantial concern that naturally occurring radioactive material in the brines can contaminate roads and road-side areas. Current decision making is based on risk exposure scenarios developed by regulatory agencies based on recreational users in rural areas and exposures to drivers during a typical commute. These scenarios are not appropriate for evaluating exposures to residential deicer users or people living near treated streets. More appropriate exposure scenarios were developed in this work and exposures predicted with these models based on laboratory measurements and literature data. Exposure scenarios currently used for regulatory assessment of brine road treatment result in predicted exposures of 0.4-0.6 mrem/year. Residential exposures predicted by the scenarios developed in this work are 4.6 mrem/year. If the maximum range of near-road soil radium concentrations observed in the region is used in this residential scenario (60 pCi/g 226 Ra, 50 pCi/g 228 Ra), residents living near these roads would be exposed to an estimated 296 mrems/year, above regulatory exposure thresholds used in nuclear facility siting assessments. These results underline the urgent need to clarify exposure risks from the use of oil and gas brines as a road treatment, particularly given the existing disparities in the distribution of road impacts across socioeconomic status.
Characterization of microbial communities and functions in shale gas wastewaters and sludge: Implications for pretreatment
Zhou et al., November 2021
Characterization of microbial communities and functions in shale gas wastewaters and sludge: Implications for pretreatment
Shangbo Zhou, Shuchan Peng, Zhiqiang Li, Daijun Zhang, Yantao Zhu, Xingquan Li, Mingyu Hong, Weichang Li, Peili Lu (2021). Journal of Hazardous Materials, 127649. 10.1016/j.jhazmat.2021.127649
Abstract:
As hydraulic fracturing (HF) practices keep expanding in China, a comparative understanding of biological characteristics of flowback and produced waters (FPW) and sludge in impoundments for FPW reserve will help propose appropriate treatment strategies. Therefore, in this study, the microbial communities and functions in impoundments that collected wastewaters from dozens of wells were characterized. The results showed that microbial richness and diversity were significantly increased in sludge compared with those in FPW. The vast majority of microorganisms found in FPW and sludge are organic degraders, providing the possibility of using these indigenous microorganisms to biodegrade organic compounds. Our laboratory findings first show that wastewater pretreatment using these microorganisms was effective, and organic compounds in FPW from different shale formations were removed by 35–68% within 72 h in a wide temperature range (8 – 30 ℃). Meanwhile, highly toxic compounds such as phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons were effectively eliminated in reactors. The main microorganisms, key functional genes, and putative pathways for alkanes, PAHs, and PAEs degradation were also identified.
As hydraulic fracturing (HF) practices keep expanding in China, a comparative understanding of biological characteristics of flowback and produced waters (FPW) and sludge in impoundments for FPW reserve will help propose appropriate treatment strategies. Therefore, in this study, the microbial communities and functions in impoundments that collected wastewaters from dozens of wells were characterized. The results showed that microbial richness and diversity were significantly increased in sludge compared with those in FPW. The vast majority of microorganisms found in FPW and sludge are organic degraders, providing the possibility of using these indigenous microorganisms to biodegrade organic compounds. Our laboratory findings first show that wastewater pretreatment using these microorganisms was effective, and organic compounds in FPW from different shale formations were removed by 35–68% within 72 h in a wide temperature range (8 – 30 ℃). Meanwhile, highly toxic compounds such as phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons were effectively eliminated in reactors. The main microorganisms, key functional genes, and putative pathways for alkanes, PAHs, and PAEs degradation were also identified.
Implementation of water treatment processes to optimize the water saving in chemically enhanced oil recovery and hydraulic fracturing methods
Zhang et al., November 2021
Implementation of water treatment processes to optimize the water saving in chemically enhanced oil recovery and hydraulic fracturing methods
Chenguang Zhang, Xiting Long, Xiangwei Tang, Aleksandr Lekomtsev, Grigory Yurievich Korobov (2021). Energy Reports, 1720-1727. 10.1016/j.egyr.2021.03.027
Abstract:
Water scarcity is one of the main challenges worldwide that might propose various engineering and economic issues. Petroleum industries have encountered these issues seriously, which required pretreatment facilities before reinjecting the produced water into the production wells. To assure that the treated water has no side effect on the environment, the treatment processes would perform three times by the photo-Fenton flotation method. This paper, it is aimed to calculate the treated water, required water, and saving water for chemically enhanced oil recovery methods (CEOR), hydraulic fracturing (HF), and other service facilities for completion and drilling performances. According to the results of this study, oil-well#3 has the highest water savings among all the wells with the 89% of daily water-saving, and oil-well#4 has the highest water savings among oil wells with the 75% of daily water saving. Consequently, in Sirri oilfield, the water-saving percentage is about 82% and 72%, which indicated that it is required 18%, 28% of the total water volume for implantation of HF process and CEOR methods, respectively. The total annual required water for this oilfield is 4131 MM m3/Day.
Water scarcity is one of the main challenges worldwide that might propose various engineering and economic issues. Petroleum industries have encountered these issues seriously, which required pretreatment facilities before reinjecting the produced water into the production wells. To assure that the treated water has no side effect on the environment, the treatment processes would perform three times by the photo-Fenton flotation method. This paper, it is aimed to calculate the treated water, required water, and saving water for chemically enhanced oil recovery methods (CEOR), hydraulic fracturing (HF), and other service facilities for completion and drilling performances. According to the results of this study, oil-well#3 has the highest water savings among all the wells with the 89% of daily water-saving, and oil-well#4 has the highest water savings among oil wells with the 75% of daily water saving. Consequently, in Sirri oilfield, the water-saving percentage is about 82% and 72%, which indicated that it is required 18%, 28% of the total water volume for implantation of HF process and CEOR methods, respectively. The total annual required water for this oilfield is 4131 MM m3/Day.
Constructed wetlands for polishing oil and gas produced water releases
McLaughlin et al., October 2021
Constructed wetlands for polishing oil and gas produced water releases
Molly C. McLaughlin, Bonnie McDevitt, Hannah Miller, Kaela K. Amundson, Michael J. Wilkins, Nathaniel R. Warner, Jens Blotevogel, Thomas Borch (2021). Environmental Science: Processes & Impacts, . 10.1039/D1EM00311A
Abstract:
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment.
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment.
A common well pad does not imply common toxicity: Assessing the acute and chronic toxicity of flowback and produced waters from four Montney Formation wells on the same well pad to the freshwater invertebrate Daphnia magna
Boyd et al., October 2021
A common well pad does not imply common toxicity: Assessing the acute and chronic toxicity of flowback and produced waters from four Montney Formation wells on the same well pad to the freshwater invertebrate Daphnia magna
Aaron Boyd, Sunil P. Myers, Ivy Luu, Katherine Snihur, Daniel S. Alessi, Kelsey Freitag, Tamzin A. Blewett (2021). Science of The Total Environment, 150986. 10.1016/j.scitotenv.2021.150986
Abstract:
Large stores of previously inaccessible hydrocarbons have become available due to the development of hydraulic fracturing technologies. During the hydraulic fracturing process, a mixture of water and proprietary additives is injected into geologic formations to release trapped hydrocarbons. After fracturing, injected water and fluid from the target formation return to the surface as flowback and produced water (FPW), a potentially toxic byproduct of hydraulic fracturing activities. FPW is a complex mixture that contains chemical additives present in the initial injection fluid as well as salts, metals, and a variety of organic compounds. As a result, FPW composition can be highly variable across wells from different geological formations, methods of fracturing and well development, and well age. The present study sought to determine if FPW sourced from four wells (O, P, U, V) located on the same well pad within the Montney Formation have similar levels of acute and chronic toxicity to the freshwater invertebrate, Daphnia magna. Minimal differences in the estimated 48 h LC50 concentrations were observed among the studied wells. Long-term, 21 d exposures to ≤2% FPW revealed differences in the level of lethality between wells, including complete mortality in daphnids exposed to 2% well O by day 9. No sublethal effects were observed as a result of exposure to FPW from wells P, U or V; however, a large impairment of reproductive traits and molting behaviour were detected after exposure to 0.75% well O FPW. These results indicate that FPW sourced from wells on the same well pad cannot be considered the same in terms of chemical composition or toxicity, an important distinction to make for risk assessment practices.
Large stores of previously inaccessible hydrocarbons have become available due to the development of hydraulic fracturing technologies. During the hydraulic fracturing process, a mixture of water and proprietary additives is injected into geologic formations to release trapped hydrocarbons. After fracturing, injected water and fluid from the target formation return to the surface as flowback and produced water (FPW), a potentially toxic byproduct of hydraulic fracturing activities. FPW is a complex mixture that contains chemical additives present in the initial injection fluid as well as salts, metals, and a variety of organic compounds. As a result, FPW composition can be highly variable across wells from different geological formations, methods of fracturing and well development, and well age. The present study sought to determine if FPW sourced from four wells (O, P, U, V) located on the same well pad within the Montney Formation have similar levels of acute and chronic toxicity to the freshwater invertebrate, Daphnia magna. Minimal differences in the estimated 48 h LC50 concentrations were observed among the studied wells. Long-term, 21 d exposures to ≤2% FPW revealed differences in the level of lethality between wells, including complete mortality in daphnids exposed to 2% well O by day 9. No sublethal effects were observed as a result of exposure to FPW from wells P, U or V; however, a large impairment of reproductive traits and molting behaviour were detected after exposure to 0.75% well O FPW. These results indicate that FPW sourced from wells on the same well pad cannot be considered the same in terms of chemical composition or toxicity, an important distinction to make for risk assessment practices.
Hydraulic fracturing flowback chemical composition diversity as a factor determining possibilities of its management
Fajfer et al., October 2021
Hydraulic fracturing flowback chemical composition diversity as a factor determining possibilities of its management
Joanna Fajfer, Olga Lipińska, Monika Konieczyńska (2021). Environmental Science and Pollution Research, . 10.1007/s11356-021-16432-7
Abstract:
The chemical characteristic of flowback fluid from hydraulic fracturing for shale gas exploration/production in various localizations is presented. The results of statistical analysis have shown that variability in the chemical composition of these fluids is statistically significant and depends on the time difference between fracturing process and flowback sampling as well as sampling spot within the installation for flowback collection. Parameters which depend on sampling schedule (time and spot of sampling) are as follows: electrical conductivity and concentration of ammonia, boron, barium, calcium, lithium, sodium, magnesium, manganese, sodium, strontium, silicate, bromide, and chloride. Independent parameters are pH, total organic carbon (TOC), concentration of potassium, and iron. The ranges of the values of the characteristic parameters were determined, taking into account the representativeness of the samples, supported by statistical tests. The methods for the reuse of flowback fluids in terms of chemical composition are presented.
The chemical characteristic of flowback fluid from hydraulic fracturing for shale gas exploration/production in various localizations is presented. The results of statistical analysis have shown that variability in the chemical composition of these fluids is statistically significant and depends on the time difference between fracturing process and flowback sampling as well as sampling spot within the installation for flowback collection. Parameters which depend on sampling schedule (time and spot of sampling) are as follows: electrical conductivity and concentration of ammonia, boron, barium, calcium, lithium, sodium, magnesium, manganese, sodium, strontium, silicate, bromide, and chloride. Independent parameters are pH, total organic carbon (TOC), concentration of potassium, and iron. The ranges of the values of the characteristic parameters were determined, taking into account the representativeness of the samples, supported by statistical tests. The methods for the reuse of flowback fluids in terms of chemical composition are presented.
Evaluation of strontium isotope tracers of produced water sources from multiple stacked reservoirs in Appalachian, Williston and Permian basins
Marza et al., September 2021
Evaluation of strontium isotope tracers of produced water sources from multiple stacked reservoirs in Appalachian, Williston and Permian basins
Mohammad Marza, Aidan Mowat, Keegan Jellicoe, Grant Ferguson, Jennifer McIntosh (2021). Journal of Geochemical Exploration, 106887. 10.1016/j.gexplo.2021.106887
Abstract:
Both unconventional and conventional oil and gas production have led to instances of brine contamination of near-surface environments from spills of saline produced waters. Strontium isotope ratios (87Sr/86Sr) have been used as a sensitive tracer of sources of brine contamination in surface waters and shallow aquifers in areas where oil and gas production are limited to only a few reservoirs and produced water sources are well-defined. Recent expansion of conventional and unconventional oil and gas production to additional tight formations within sedimentary basins has resulted in production of formation waters from multiple oil and gas reservoirs that may have similar chemical and isotopic ratios, including 87Sr/86Sr. This study evaluates the utility of 87Sr/86Sr, the most widely available tracer dataset beyond major ion chemistry and water stable isotopes, as a tracer of brine contamination related to conventional and unconventional oil and gas production in the Williston, Appalachian and Permian basins. Multiple stacked oil and gas reservoirs within each basin have overlapping formation water 87Sr/86Sr, based on a non-parametric statistical test. For example, in the Appalachian Basin, produced waters from unconventional gas production in the Middle Devonian Marcellus and Upper Ordovician Utica shales have overlapping 87Sr/86Sr. In the Permian Basin, produced waters from the unconventional Pennsylvanian-Permian Wolfcamp Shale and conventional and unconventional Pennsylvanian Cisco/Canyon/Strawn formations have similar 87Sr/86Sr. In the Williston Basin produced waters from Late Devonian to Early Mississippian Bakken Formation unconventional oil production have overlapping 87Sr/86Sr with produced waters associated with minor production of conventional oil from the Middle Devonian Winnipegosis. Improved spatial characterization of 87Sr/86Sr and other isotopic signatures of produced waters from various oil/gas reservoirs are needed to constrain geographic and depth variability of produced waters in hydrocarbon producing regions. This is particularly important, as unconventional oil and gas production expands in areas of existing conventional oil and gas production, where delineating sources of saline produced waters in cases of accidental surface spills or subsurface leakage will become a greater challenge. Sr isotopes alone may not be able to distinguish produced waters in areas with overlapping production from reservoirs with similar isotopic signatures.
Both unconventional and conventional oil and gas production have led to instances of brine contamination of near-surface environments from spills of saline produced waters. Strontium isotope ratios (87Sr/86Sr) have been used as a sensitive tracer of sources of brine contamination in surface waters and shallow aquifers in areas where oil and gas production are limited to only a few reservoirs and produced water sources are well-defined. Recent expansion of conventional and unconventional oil and gas production to additional tight formations within sedimentary basins has resulted in production of formation waters from multiple oil and gas reservoirs that may have similar chemical and isotopic ratios, including 87Sr/86Sr. This study evaluates the utility of 87Sr/86Sr, the most widely available tracer dataset beyond major ion chemistry and water stable isotopes, as a tracer of brine contamination related to conventional and unconventional oil and gas production in the Williston, Appalachian and Permian basins. Multiple stacked oil and gas reservoirs within each basin have overlapping formation water 87Sr/86Sr, based on a non-parametric statistical test. For example, in the Appalachian Basin, produced waters from unconventional gas production in the Middle Devonian Marcellus and Upper Ordovician Utica shales have overlapping 87Sr/86Sr. In the Permian Basin, produced waters from the unconventional Pennsylvanian-Permian Wolfcamp Shale and conventional and unconventional Pennsylvanian Cisco/Canyon/Strawn formations have similar 87Sr/86Sr. In the Williston Basin produced waters from Late Devonian to Early Mississippian Bakken Formation unconventional oil production have overlapping 87Sr/86Sr with produced waters associated with minor production of conventional oil from the Middle Devonian Winnipegosis. Improved spatial characterization of 87Sr/86Sr and other isotopic signatures of produced waters from various oil/gas reservoirs are needed to constrain geographic and depth variability of produced waters in hydrocarbon producing regions. This is particularly important, as unconventional oil and gas production expands in areas of existing conventional oil and gas production, where delineating sources of saline produced waters in cases of accidental surface spills or subsurface leakage will become a greater challenge. Sr isotopes alone may not be able to distinguish produced waters in areas with overlapping production from reservoirs with similar isotopic signatures.
Freshwater Mussel Soft Tissue Incorporates Strontium Isotopic Signatures of Oil and Gas Produced Water
McDevitt et al., August 2021
Freshwater Mussel Soft Tissue Incorporates Strontium Isotopic Signatures of Oil and Gas Produced Water
Bonnie McDevitt, Thomas J. Geeza, David P. Gillikin, Nathaniel R. Warner (2021). ACS ES&T Water, . 10.1021/acsestwater.1c00135
Abstract:
In many basins across the United States, oil and gas (O&G) wastewater high in alkaline earth metals (such as Ba, Sr, and Ca) and radioactivity is discharged to surface waters. Freshwater mussels have experienced high mortality rates downstream of O&G discharges despite significant dilution. 87Sr/86Sr and Sr/Ca measured in mussel soft tissue could prove to be an inexpensive, efficient biomonitoring tool if tissue concentrations show O&G produced water signatures similar to those of shells. O&G-derived 226Ra/228Ra has not previously been studied in freshwater mussels. Additionally, accumulation of O&G-derived metals in mussel tissue may impact bioaccumulation in higher-trophic level organisms. A tank study using freshwater mussels (Elliptio complanata) was completed using Marcellus Shale-produced water diluted with regional surface water to realistic dilution levels (100–600-fold dilution). Results from the three-month study suggest Sr/Ca and 87Sr/86Sr robustly trace O&G pollution in mussel soft tissue. The high-dose tank soft tissue average 87Sr/86Sr [0.709502 ± (7.68 × 10–5)] was significantly more radiogenic than average control tank soft tissue [0.706808 ± (4.23 × 10–5)]. Radium concentrations in soft tissue were not significantly different between tanks. Changes in the soft tissue chemistry of mussel species from relatively low doses of O&G wastewater suggest surface water disposal volumes may require re-evaluation to prevent further impacts.
In many basins across the United States, oil and gas (O&G) wastewater high in alkaline earth metals (such as Ba, Sr, and Ca) and radioactivity is discharged to surface waters. Freshwater mussels have experienced high mortality rates downstream of O&G discharges despite significant dilution. 87Sr/86Sr and Sr/Ca measured in mussel soft tissue could prove to be an inexpensive, efficient biomonitoring tool if tissue concentrations show O&G produced water signatures similar to those of shells. O&G-derived 226Ra/228Ra has not previously been studied in freshwater mussels. Additionally, accumulation of O&G-derived metals in mussel tissue may impact bioaccumulation in higher-trophic level organisms. A tank study using freshwater mussels (Elliptio complanata) was completed using Marcellus Shale-produced water diluted with regional surface water to realistic dilution levels (100–600-fold dilution). Results from the three-month study suggest Sr/Ca and 87Sr/86Sr robustly trace O&G pollution in mussel soft tissue. The high-dose tank soft tissue average 87Sr/86Sr [0.709502 ± (7.68 × 10–5)] was significantly more radiogenic than average control tank soft tissue [0.706808 ± (4.23 × 10–5)]. Radium concentrations in soft tissue were not significantly different between tanks. Changes in the soft tissue chemistry of mussel species from relatively low doses of O&G wastewater suggest surface water disposal volumes may require re-evaluation to prevent further impacts.
Analysis and prediction of produced water quantity and quality in the Permian Basin using machine learning techniques
Jiang et al., August 2021
Analysis and prediction of produced water quantity and quality in the Permian Basin using machine learning techniques
Wenbin Jiang, Beepana Pokharel, Lu Lin, Huiping Cao, Kenneth C. Carroll, Yanyan Zhang, Carlos Galdeano, Deepak A. Musale, Ganesh L. Ghurye, Pei Xu (2021). Science of The Total Environment, 149693. 10.1016/j.scitotenv.2021.149693
Abstract:
Appropriate produced water (PW) management is critical for oil and gas industry. Understanding PW quantity and quality trends for one well or all similar wells in one region would significantly assist operators, regulators, and water treatment/disposal companies in optimizing PW management. In this research, historical PW quantity and quality data in the New Mexico portion (NM) of the Permian Basin from 1995 to 2019 was collected, pre-processed, and analyzed to understand the distribution, trend, and characteristics of PW production for potential beneficial use. Various machine learning algorithms were applied to predict PW quantity for different types of oil and gas wells. Both linear and non-linear regression approaches were used to conduct the analysis. The prediction results from five-fold cross-validation showed that the Random Forest Regression model reported high prediction accuracy. The AutoRegressive Integrated Moving Average model showed good results for predicting PW volume in time series. The water quality analysis results showed that the PW samples from the Delaware and Artesia Formations (mostly from conventional wells) had the highest and the lowest average total dissolved solids concentrations of 194,535 mg/L and 100,036 mg/L, respectively. This study is the first research that comprehensively analyzed and predicted PW quantity and quality in the NM-Permian Basin. The results can be used to develop a geospatial metrics analysis or facilitate system modeling to identify the potential opportunities and challenges of PW management alternatives within and outside oil and gas industry. The machine learning techniques developed in this study are generic and can be applied to other basins to predict PW quantity and quality.
Appropriate produced water (PW) management is critical for oil and gas industry. Understanding PW quantity and quality trends for one well or all similar wells in one region would significantly assist operators, regulators, and water treatment/disposal companies in optimizing PW management. In this research, historical PW quantity and quality data in the New Mexico portion (NM) of the Permian Basin from 1995 to 2019 was collected, pre-processed, and analyzed to understand the distribution, trend, and characteristics of PW production for potential beneficial use. Various machine learning algorithms were applied to predict PW quantity for different types of oil and gas wells. Both linear and non-linear regression approaches were used to conduct the analysis. The prediction results from five-fold cross-validation showed that the Random Forest Regression model reported high prediction accuracy. The AutoRegressive Integrated Moving Average model showed good results for predicting PW volume in time series. The water quality analysis results showed that the PW samples from the Delaware and Artesia Formations (mostly from conventional wells) had the highest and the lowest average total dissolved solids concentrations of 194,535 mg/L and 100,036 mg/L, respectively. This study is the first research that comprehensively analyzed and predicted PW quantity and quality in the NM-Permian Basin. The results can be used to develop a geospatial metrics analysis or facilitate system modeling to identify the potential opportunities and challenges of PW management alternatives within and outside oil and gas industry. The machine learning techniques developed in this study are generic and can be applied to other basins to predict PW quantity and quality.
A complex bioaccumulation story in flowback and produced water from hydraulic fracturing: The role of organic compounds in inorganic accumulation in Lumbriculus variegatus
Mehler et al., July 2021
A complex bioaccumulation story in flowback and produced water from hydraulic fracturing: The role of organic compounds in inorganic accumulation in Lumbriculus variegatus
W. Tyler Mehler, Katherine N. Snihur, Yifeng Zhang, Huizhen Li, Daniel S. Alessi, Greg G. Goss (2021). Journal of Hazardous Materials, 125525. 10.1016/j.jhazmat.2021.125525
Abstract:
Hydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity. In the present study, bioaccumulation assays (7-d uptake and 7-d elimination period) with FPW (1% dilution) were conducted with the freshwater oligochaete, Lumbriculus variegatus, to evaluate the toxicokinetics of inorganic elements. To evaluate the interacting role of organics, bioaccumulation of elements in unmodified FPW was compared to activated carbon treated FPW (AC-modified). Differences in uptake and elimination rates as well as elimination steady state concentrations between unmodified and AC-modified treatments indicated that the organics play an important role in the uptake and depuration of inorganic elements in FPW. These differences in toxicokinetics between treatments aligned with observed growth rates in the worms which were higher in the AC-modified treatment. Whether growth differences resulted from increased accumulation and changes in toxicokinetic rates of inorganics or caused by direct toxicity from the organic fraction of FPW itself is still unknown and requires further research.
Hydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity. In the present study, bioaccumulation assays (7-d uptake and 7-d elimination period) with FPW (1% dilution) were conducted with the freshwater oligochaete, Lumbriculus variegatus, to evaluate the toxicokinetics of inorganic elements. To evaluate the interacting role of organics, bioaccumulation of elements in unmodified FPW was compared to activated carbon treated FPW (AC-modified). Differences in uptake and elimination rates as well as elimination steady state concentrations between unmodified and AC-modified treatments indicated that the organics play an important role in the uptake and depuration of inorganic elements in FPW. These differences in toxicokinetics between treatments aligned with observed growth rates in the worms which were higher in the AC-modified treatment. Whether growth differences resulted from increased accumulation and changes in toxicokinetic rates of inorganics or caused by direct toxicity from the organic fraction of FPW itself is still unknown and requires further research.
Insights on Geochemical, Isotopic, and Volumetric Compositions of Produced Water from Hydraulically Fractured Williston Basin Oil Wells
Gallegos et al., July 2021
Insights on Geochemical, Isotopic, and Volumetric Compositions of Produced Water from Hydraulically Fractured Williston Basin Oil Wells
Tanya J. Gallegos, Colin Doolan, Rodney Caldwell, Mark A. Engle, Matthew Varonka, Justin Birdwell, Glenn Jolly, Tyler B. Coplen, Thomas Oliver (2021). Environmental Science & Technology, . 10.1021/acs.est.0c06789
Abstract:
Tracing produced water origins from wells hydraulically fractured with freshwater-based fluids is sometimes predicated on assumptions that (1) each geological formation contains compositionally unique brine and (2) produced water from recently hydraulically fractured wells resembles fresher meteoric water more so than produced water from older wells. These assumptions are not valid in Williston Basin oil wells sampled in this study. Although distinct average 228Ra/226Ra ratios were found in water produced from the Bakken and Three Forks Formations, average δ2H, δ18O, specific gravity, and conductivity were similar but exhibited significant variability across five oil fields within each formation. Furthermore, initial produced water (“flowback”) was operationally defined based on the presence of glycol ether compounds and water from wells that had produced <56% of the amount of fluids injected and sampled within 160 days of fracturing. Flowback unexpectedly exhibited higher temperature, specific gravity, conductivity, δ2H, and δ18O, but lower oxidation–reduction potential and δ11B, relative to the wells thought to be producing formation brines (from wells with a produced-to-injected water ratio [PIWR] > 0.84 and sampled more than 316 days after fracturing). As such, establishing an overall geochemical and isotopic signature of produced water compositions based solely on chemical similarity to meteoric water and formation without the consideration of well treatments, well completion depth, or lateral location across the basin could be misleading if these signatures are assumed to be applicable across the entire basin. These findings have implications for using produced water compositions to understand the interbasin fluid flow and trace sources of hydraulic fracturing fluids.
Tracing produced water origins from wells hydraulically fractured with freshwater-based fluids is sometimes predicated on assumptions that (1) each geological formation contains compositionally unique brine and (2) produced water from recently hydraulically fractured wells resembles fresher meteoric water more so than produced water from older wells. These assumptions are not valid in Williston Basin oil wells sampled in this study. Although distinct average 228Ra/226Ra ratios were found in water produced from the Bakken and Three Forks Formations, average δ2H, δ18O, specific gravity, and conductivity were similar but exhibited significant variability across five oil fields within each formation. Furthermore, initial produced water (“flowback”) was operationally defined based on the presence of glycol ether compounds and water from wells that had produced <56% of the amount of fluids injected and sampled within 160 days of fracturing. Flowback unexpectedly exhibited higher temperature, specific gravity, conductivity, δ2H, and δ18O, but lower oxidation–reduction potential and δ11B, relative to the wells thought to be producing formation brines (from wells with a produced-to-injected water ratio [PIWR] > 0.84 and sampled more than 316 days after fracturing). As such, establishing an overall geochemical and isotopic signature of produced water compositions based solely on chemical similarity to meteoric water and formation without the consideration of well treatments, well completion depth, or lateral location across the basin could be misleading if these signatures are assumed to be applicable across the entire basin. These findings have implications for using produced water compositions to understand the interbasin fluid flow and trace sources of hydraulic fracturing fluids.
Removal of organic compounds from shale gas fracturing flowback water by an integrated electrocoagulation and electro-peroxone process
Zhang et al., June 2021
Removal of organic compounds from shale gas fracturing flowback water by an integrated electrocoagulation and electro-peroxone process
Yixin Zhang, Erzhuo Zhao, Xinxin Cui, Wei Zhu, Xia Han, Gang Yu, Yujue Wang (2021). Separation and Purification Technology, 118496. 10.1016/j.seppur.2021.118496
Abstract:
This study investigated the removal of organic compounds from shale gas fracturing flowback water (FFW) by an integrated electro-coagulation and electro-peroxone (EC-EP) process in a divided electrochemical reactor. During the EC-EP process, electricity was efficiently utilized to produce both aluminum ion (Al3+) from electrochemical oxidation of an aluminum anode in the anodic compartment and hydrogen peroxide (H2O2) from oxygen reduction at a carbon-based cathode in the cathodic compartment. The in-situ generated H2O2 then reacted with ozone (O3) sparged in the cathodic compartment to produce hydroxyl radicals (•OH) for pollutant oxidation. The results showed that by sequentially treating the selected FFW by the EC and EP process in the anodic and cathodic compartment for 30 min, respectively, the EC-EP process effectively removed ~95% of total organic carbon (TOC) from the FFW, meeting the wastewater discharge standard for TOC (≤30 mg/L) with a low specific energy consumption of 0.11–0.21 kWh/g TOC removed. In contrast, individual EC and EP process, as well as the previously investigated ECP process that combined the EC and EP process in an undivided reactor, removed only ~76%, 32%, and 80% TOC from the FFW under similar reaction conditions, and thus could not meet the wastewater discharge standard. These results demonstrate that the EC-EP process successfully integrates the merit of the EC and EP process and may thus provide a cost-effective way to remove organic compounds for FFW disposal and reuses.
This study investigated the removal of organic compounds from shale gas fracturing flowback water (FFW) by an integrated electro-coagulation and electro-peroxone (EC-EP) process in a divided electrochemical reactor. During the EC-EP process, electricity was efficiently utilized to produce both aluminum ion (Al3+) from electrochemical oxidation of an aluminum anode in the anodic compartment and hydrogen peroxide (H2O2) from oxygen reduction at a carbon-based cathode in the cathodic compartment. The in-situ generated H2O2 then reacted with ozone (O3) sparged in the cathodic compartment to produce hydroxyl radicals (•OH) for pollutant oxidation. The results showed that by sequentially treating the selected FFW by the EC and EP process in the anodic and cathodic compartment for 30 min, respectively, the EC-EP process effectively removed ~95% of total organic carbon (TOC) from the FFW, meeting the wastewater discharge standard for TOC (≤30 mg/L) with a low specific energy consumption of 0.11–0.21 kWh/g TOC removed. In contrast, individual EC and EP process, as well as the previously investigated ECP process that combined the EC and EP process in an undivided reactor, removed only ~76%, 32%, and 80% TOC from the FFW under similar reaction conditions, and thus could not meet the wastewater discharge standard. These results demonstrate that the EC-EP process successfully integrates the merit of the EC and EP process and may thus provide a cost-effective way to remove organic compounds for FFW disposal and reuses.
Fate of radium on the discharge of oil and gas produced water to the marine environment
Ahmad et al., June 2021
Fate of radium on the discharge of oil and gas produced water to the marine environment
Faraaz Ahmad, Katherine Morris, Gareth T. W. Law, Kevin G. Taylor, Samuel Shaw (2021). Chemosphere, 129550. 10.1016/j.chemosphere.2021.129550
Abstract:
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements
Feng Xiao, May 2021
Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements
Feng Xiao (2021). Science of The Total Environment, 145283. 10.1016/j.scitotenv.2021.145283
Abstract:
The oilfield produced water is a major waste stream in places where shale-gas production is growing rapidly. The reuse of produced water merits consideration because this practice helps reduce freshwater demand for fracking and moderates water pollution. Knowledge about the chemistry of produced water is needed to develop sustainable treatment/reuse strategies and set standards for acceptable levels of treatment of produced water. Thus, the author performed the first comprehensive analysis of oilfield produced water collected from the Bakken shale play in the U.S. state of North Dakota that represents the nation's third-largest net increase in proven crude oil reserves. The concentrations of a total of 36 elements in 13 IUPAC groups were determined. Among them, a few metals that are critical to the economy of the United States were detected at elevated concentrations (median, mg/L): K (7,620), Mg (2780), Sr (1610), Li (69), and Mn (33). Heavy metals essential for plants and animals, including Cu, Zn, and Mn, were detected at ppm levels. Measurable concentrations of highly toxic metal ions such as Cd and Pb were not detected. Concentrations of rare earth elements and platinum group metals were below respective detection limits. The produced water samples had very high total dissolved solids (237,680 ± 73,828 mg/L) and total hardness (>31,000 mg/L as CaCO3) but an extremely low alkalinity (152.4 ± 184.9 mg/L as CaCO3); therefore, softening by lime and soda was ineffective. Softening by caustic soda removed 99.5% hardness ions (Ca and Mg) under alkaline conditions. This study provides vital insight into the chemistry and treatability of produced water containing various metals.
The oilfield produced water is a major waste stream in places where shale-gas production is growing rapidly. The reuse of produced water merits consideration because this practice helps reduce freshwater demand for fracking and moderates water pollution. Knowledge about the chemistry of produced water is needed to develop sustainable treatment/reuse strategies and set standards for acceptable levels of treatment of produced water. Thus, the author performed the first comprehensive analysis of oilfield produced water collected from the Bakken shale play in the U.S. state of North Dakota that represents the nation's third-largest net increase in proven crude oil reserves. The concentrations of a total of 36 elements in 13 IUPAC groups were determined. Among them, a few metals that are critical to the economy of the United States were detected at elevated concentrations (median, mg/L): K (7,620), Mg (2780), Sr (1610), Li (69), and Mn (33). Heavy metals essential for plants and animals, including Cu, Zn, and Mn, were detected at ppm levels. Measurable concentrations of highly toxic metal ions such as Cd and Pb were not detected. Concentrations of rare earth elements and platinum group metals were below respective detection limits. The produced water samples had very high total dissolved solids (237,680 ± 73,828 mg/L) and total hardness (>31,000 mg/L as CaCO3) but an extremely low alkalinity (152.4 ± 184.9 mg/L as CaCO3); therefore, softening by lime and soda was ineffective. Softening by caustic soda removed 99.5% hardness ions (Ca and Mg) under alkaline conditions. This study provides vital insight into the chemistry and treatability of produced water containing various metals.
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Philibert et al., May 2021
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Danielle A. Philibert, Danielle D. Lyons, Ketih B. Tierney (2021). Science of The Total Environment, 144745. 10.1016/j.scitotenv.2020.144745
Abstract:
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.