This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 23, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Risk assessment of pollutants in flowback and produced waters and sludge in impoundments
Zhou et al., March 2022
Risk assessment of pollutants in flowback and produced waters and sludge in impoundments
Shangbo Zhou, Shuchan Peng, Zhiqiang Li, Daijun Zhang, Yantao Zhu, Xingquan Li, Mingyu Hong, Weichang Li, Peili Lu (2022). Science of The Total Environment, 152250. 10.1016/j.scitotenv.2021.152250
Abstract:
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10–41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10–41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Exposure to unconventional oil and gas development and all-cause mortality in Medicare beneficiaries
Li et al., January 2022
Exposure to unconventional oil and gas development and all-cause mortality in Medicare beneficiaries
Longxiang Li, Francesca Dominici, Annelise J. Blomberg, Falco J. Bargagli-Stoffi, Joel D. Schwartz, Brent A. Coull, John D. Spengler, Yaguang Wei, Joy Lawrence, Petros Koutrakis (2022). Nature Energy, 1-9. 10.1038/s41560-021-00970-y
Abstract:
Little is known about whether exposure to unconventional oil and gas development is associated with higher mortality risks in the elderly and whether related air pollutants are exposure pathways. We studied a cohort of 15,198,496 Medicare beneficiaries (136,215,059 person-years) in all major US unconventional exploration regions from 2001 to 2015. We gathered data from records of more than 2.5 million oil and gas wells. For each beneficiary’s ZIP code of residence and year in the cohort, we calculated a proximity-based and a downwind-based pollutant exposure. We analysed the data using two methods: a Cox proportional hazards model and a difference-in-differences design. We found evidence of a statistically significant higher mortality risk associated with living in proximity to and downwind of unconventional oil and gas wells. Our results suggest that primary air pollutants sourced from unconventional oil and gas exploration can be a major exposure pathway with adverse health effects in the elderly.
Little is known about whether exposure to unconventional oil and gas development is associated with higher mortality risks in the elderly and whether related air pollutants are exposure pathways. We studied a cohort of 15,198,496 Medicare beneficiaries (136,215,059 person-years) in all major US unconventional exploration regions from 2001 to 2015. We gathered data from records of more than 2.5 million oil and gas wells. For each beneficiary’s ZIP code of residence and year in the cohort, we calculated a proximity-based and a downwind-based pollutant exposure. We analysed the data using two methods: a Cox proportional hazards model and a difference-in-differences design. We found evidence of a statistically significant higher mortality risk associated with living in proximity to and downwind of unconventional oil and gas wells. Our results suggest that primary air pollutants sourced from unconventional oil and gas exploration can be a major exposure pathway with adverse health effects in the elderly.
Health-based evaluation of ambient air measurements of PM 2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus
Long et al., February 2021
Health-based evaluation of ambient air measurements of PM 2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus
Christopher M. Long, Nicole L. Briggs, Brian A. Cochran, Destiny M. Mims (2021). Journal of Exposure Science & Environmental Epidemiology, 1-14. 10.1038/s41370-021-00298-5
Abstract:
Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads.
Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads.
Acute Myocardial Infarction Associated with Unconventional Natural Gas Development:A Natural Experiment
Denham et al., February 2021
Acute Myocardial Infarction Associated with Unconventional Natural Gas Development:A Natural Experiment
Alina Denham, Mary D. Willis, Daniel Croft, Linxi Liu, Elaine L. Hill (2021). Environmental Research, 110872. 10.1016/j.envres.2021.110872
Abstract:
Background Whereas it is plausible that unconventional natural gas development (UNGD) may adversely affect cardiovascular health, little is currently known. We investigate whether UNGD is associated with acute myocardial infarction (AMI). Methods In this observational study leveraging the natural experiment generated by New York’s ban on hydraulic fracturing, we analyzed the relationship between age- and sex-specific county-level AMI hospitalization and mortality rates and three UNGD drilling measures. This longitudinal panel analysis compares Pennsylvania and New York counties on the Marcellus Shale observed over 2005-2014 (N=2,840 county-year-quarters). Results A hundred cumulative wells is associated with 0.26 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.07,0.46), 0.40 more hospitalizations per 10,000 males 65-74y.o. (95% CI 0.09,0.71), 0.47 more hospitalizations per 10,000 females 65-74y.o. (95% CI 0.18,0.77) and 1.11 more hospitalizations per 10,000 females 75y.o.+ (95% CI 0.39,1.82), translating into 1.4-2.8% increases. One additional well per square mile is associated with 2.63 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.67,4.59) and 9.7 hospitalizations per 10,000 females 75y.o.+ (95% CI 1.92,17.42), 25.8% and 24.2% increases respectively. As for mortality rates, a hundred cumulative wells is associated with an increase of 0.09 deaths per 10,000 males 45-54y.o. (95% CI 0.02,0.16), a 5.3% increase. Conclusions Cumulative UNGD is associated with increased AMI hospitalization rates among middle-aged men, older men and older women as well as with increased AMI mortality among middle-aged men. Our findings lend support for increased awareness about cardiovascular risks of UNGD and scaled-up AMI prevention as well as suggest that bans on hydraulic fracturing can be protective for public health.
Background Whereas it is plausible that unconventional natural gas development (UNGD) may adversely affect cardiovascular health, little is currently known. We investigate whether UNGD is associated with acute myocardial infarction (AMI). Methods In this observational study leveraging the natural experiment generated by New York’s ban on hydraulic fracturing, we analyzed the relationship between age- and sex-specific county-level AMI hospitalization and mortality rates and three UNGD drilling measures. This longitudinal panel analysis compares Pennsylvania and New York counties on the Marcellus Shale observed over 2005-2014 (N=2,840 county-year-quarters). Results A hundred cumulative wells is associated with 0.26 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.07,0.46), 0.40 more hospitalizations per 10,000 males 65-74y.o. (95% CI 0.09,0.71), 0.47 more hospitalizations per 10,000 females 65-74y.o. (95% CI 0.18,0.77) and 1.11 more hospitalizations per 10,000 females 75y.o.+ (95% CI 0.39,1.82), translating into 1.4-2.8% increases. One additional well per square mile is associated with 2.63 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.67,4.59) and 9.7 hospitalizations per 10,000 females 75y.o.+ (95% CI 1.92,17.42), 25.8% and 24.2% increases respectively. As for mortality rates, a hundred cumulative wells is associated with an increase of 0.09 deaths per 10,000 males 45-54y.o. (95% CI 0.02,0.16), a 5.3% increase. Conclusions Cumulative UNGD is associated with increased AMI hospitalization rates among middle-aged men, older men and older women as well as with increased AMI mortality among middle-aged men. Our findings lend support for increased awareness about cardiovascular risks of UNGD and scaled-up AMI prevention as well as suggest that bans on hydraulic fracturing can be protective for public health.
Birth defects and unconventional natural gas developments in Texas, 1999–2011
Tang et al., November 2020
Birth defects and unconventional natural gas developments in Texas, 1999–2011
Ian W. Tang, Peter H. Langlois, Verónica M. Vieira (2020). Environmental Research, 110511. 10.1016/j.envres.2020.110511
Abstract:
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA
Blinn et al., August 2020
Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA
Hannah N. Blinn, Ryan M. Utz, Lydia H. Greiner, David R. Brown (2020). PLOS ONE, e0237325. 10.1371/journal.pone.0237325
Abstract:
Recent research has shown relationships between health outcomes and residence proximity to unconventional oil and natural gas development (UOGD). The challenge of connecting health outcomes to environmental stressors requires ongoing research with new methodological approaches. We investigated UOGD density and well emissions and their association with symptom reporting by residents of southwest Pennsylvania. A retrospective analysis was conducted on 104 unique, de-identified health assessments completed from 2012–2017 by residents living in proximity to UOGD. A novel approach to comparing estimates of exposure was taken. Generalized linear modeling was used to ascertain the relationship between symptom counts and estimated UOGD exposure, while Threshold Indicator Taxa Analysis (TITAN) was used to identify associations between individual symptoms and estimated UOGD exposure. We used three estimates of exposure: cumulative well density (CWD), inverse distance weighting (IDW) of wells, and annual emission concentrations (AEC) from wells within 5 km of respondents’ homes. Taking well emissions reported to the Pennsylvania Department of Environmental Protection, an air dispersion and screening model was used to estimate an emissions concentration at residences. When controlling for age, sex, and smoker status, each exposure estimate predicted total number of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information criterion values revealed that CWD was the better predictor of adverse health symptoms in our sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular) constituted 50% of reported symptoms across exposures, suggesting these groupings of symptoms may be more likely reported by respondents when UOGD intensity increases. Our results do not confirm that UOGD was the direct cause of the reported symptoms but raise concern about the growing number of wells around residential areas. Our approach presents a novel method of quantifying exposures and relating them to reported health symptoms.
Recent research has shown relationships between health outcomes and residence proximity to unconventional oil and natural gas development (UOGD). The challenge of connecting health outcomes to environmental stressors requires ongoing research with new methodological approaches. We investigated UOGD density and well emissions and their association with symptom reporting by residents of southwest Pennsylvania. A retrospective analysis was conducted on 104 unique, de-identified health assessments completed from 2012–2017 by residents living in proximity to UOGD. A novel approach to comparing estimates of exposure was taken. Generalized linear modeling was used to ascertain the relationship between symptom counts and estimated UOGD exposure, while Threshold Indicator Taxa Analysis (TITAN) was used to identify associations between individual symptoms and estimated UOGD exposure. We used three estimates of exposure: cumulative well density (CWD), inverse distance weighting (IDW) of wells, and annual emission concentrations (AEC) from wells within 5 km of respondents’ homes. Taking well emissions reported to the Pennsylvania Department of Environmental Protection, an air dispersion and screening model was used to estimate an emissions concentration at residences. When controlling for age, sex, and smoker status, each exposure estimate predicted total number of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information criterion values revealed that CWD was the better predictor of adverse health symptoms in our sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular) constituted 50% of reported symptoms across exposures, suggesting these groupings of symptoms may be more likely reported by respondents when UOGD intensity increases. Our results do not confirm that UOGD was the direct cause of the reported symptoms but raise concern about the growing number of wells around residential areas. Our approach presents a novel method of quantifying exposures and relating them to reported health symptoms.
Oil and gas production and spontaneous preterm birth in the San Joaquin Valley, CA: A case–control study
Gonzalez et al., August 2020
Oil and gas production and spontaneous preterm birth in the San Joaquin Valley, CA: A case–control study
David J. X. Gonzalez, Allison R. Sherris, Wei Yang, David K. Stevenson, Amy M. Padula, Michael Baiocchi, Marshall Burke, Mark R. Cullen, Gary M. Shaw (2020). Environmental Epidemiology, e099. 10.1097/EE9.0000000000000099
Abstract:
Background: Recent studies report an association between preterm birth and exposure to unconventional oil and gas wells. There has been limited previous study on exposure to conventional wells, which are common in California. Our objective was to determine whether exposure to well sites was associated with increased odds of spontaneous preterm birth (delivery at <37 weeks). Methods: We conducted a case–control study using data on 27,913 preterm birth cases and 197,461 term birth controls. All births were without maternal comorbidities and were located in the San Joaquin Valley, CA, between 1998 and 2011. We obtained data for 83,559 wells in preproduction or production during the study period. We assessed exposure using inverse distance-squared weighting and, for each birth and trimester, we assigned an exposure tertile. Using logistic regression, we estimated adjusted odds ratios (ORs) for the association between exposure to well sites and preterm birth at 20–27, 28–31, and 32–36 weeks. Results: We observed increased ORs for preterm birth with high exposure to wells in the first and second trimesters for births delivered at ≤31 weeks (adjusted ORs, 1.08–1.14). In stratified analyses, the associations were confined to births to Hispanic and non-Hispanic Black women and to women with ≤12 years of educational attainment. In a secondary analysis, we found evidence that exposure to wells in preproduction is associated with higher concentrations of particulate matter. Conclusions: We found evidence that exposure to oil and gas well sites is associated with increased risk of spontaneous preterm birth.
Background: Recent studies report an association between preterm birth and exposure to unconventional oil and gas wells. There has been limited previous study on exposure to conventional wells, which are common in California. Our objective was to determine whether exposure to well sites was associated with increased odds of spontaneous preterm birth (delivery at <37 weeks). Methods: We conducted a case–control study using data on 27,913 preterm birth cases and 197,461 term birth controls. All births were without maternal comorbidities and were located in the San Joaquin Valley, CA, between 1998 and 2011. We obtained data for 83,559 wells in preproduction or production during the study period. We assessed exposure using inverse distance-squared weighting and, for each birth and trimester, we assigned an exposure tertile. Using logistic regression, we estimated adjusted odds ratios (ORs) for the association between exposure to well sites and preterm birth at 20–27, 28–31, and 32–36 weeks. Results: We observed increased ORs for preterm birth with high exposure to wells in the first and second trimesters for births delivered at ≤31 weeks (adjusted ORs, 1.08–1.14). In stratified analyses, the associations were confined to births to Hispanic and non-Hispanic Black women and to women with ≤12 years of educational attainment. In a secondary analysis, we found evidence that exposure to wells in preproduction is associated with higher concentrations of particulate matter. Conclusions: We found evidence that exposure to oil and gas well sites is associated with increased risk of spontaneous preterm birth.
Density and proximity to hydraulic fracturing wells and birth outcomes in Northeastern British Columbia, Canada
Caron-Beaudoin et al., July 2020
Density and proximity to hydraulic fracturing wells and birth outcomes in Northeastern British Columbia, Canada
Élyse Caron-Beaudoin, Kristina W. Whitworth, Delphine Bosson-Rieutort, Gilles Wendling, Suyang Liu, Marc-André Verner (2020). Journal of Exposure Science & Environmental Epidemiology, 1-9. 10.1038/s41370-020-0245-z
Abstract:
Hydraulic fracturing, a method used in Northeastern British Columbia (Canada) to extract natural gas, can release contaminants with potential deleterious health effects on fetal development. To date, the association between hydraulic fracturing activity and birth outcomes has not been evaluated in this region.
Hydraulic fracturing, a method used in Northeastern British Columbia (Canada) to extract natural gas, can release contaminants with potential deleterious health effects on fetal development. To date, the association between hydraulic fracturing activity and birth outcomes has not been evaluated in this region.
Natural gas pipeline compressor stations: VOC emissions and mortality rates
Michael Hendryx and Juhua Luo, May 2020
Natural gas pipeline compressor stations: VOC emissions and mortality rates
Michael Hendryx and Juhua Luo (2020). The Extractive Industries and Society, . 10.1016/j.exis.2020.04.011
Abstract:
Increasing reliance on natural gas for energy has resulted in expansion of the natural gas infrastructure, including pipelines and compressor stations to transport gas. Compressor stations emit numerous particulate and gaseous pollutants including volatile organic compounds (VOCs) but studies of human health in association with compressor stations are almost completely absent from the literature. The objective of the study was to test for associations between VOC emissions from compressor stations and adjusted mortality rates. We conducted a county-level ecological study, using VOC emission data from the 2017 National Emissions Inventory, 2017 age-adjusted total mortality per 100,000 population from CDC data, and covariates from the County Health Rankings data. Results of multiple linear regression models showed that total age-adjusted mortality, controlling for covariates (race/ethnicity, education, poverty, urbanicity, smoking and obesity rates), was significantly higher in association with greater non-methane VOC emissions from compressor stations. Twelve individual VOCs were also associated with significantly higher adjusted mortality. Results provide preliminary evidence that compressor stations along natural gas pipelines are sources of pollutant exposures that may contribute to adverse human health outcomes.
Increasing reliance on natural gas for energy has resulted in expansion of the natural gas infrastructure, including pipelines and compressor stations to transport gas. Compressor stations emit numerous particulate and gaseous pollutants including volatile organic compounds (VOCs) but studies of human health in association with compressor stations are almost completely absent from the literature. The objective of the study was to test for associations between VOC emissions from compressor stations and adjusted mortality rates. We conducted a county-level ecological study, using VOC emission data from the 2017 National Emissions Inventory, 2017 age-adjusted total mortality per 100,000 population from CDC data, and covariates from the County Health Rankings data. Results of multiple linear regression models showed that total age-adjusted mortality, controlling for covariates (race/ethnicity, education, poverty, urbanicity, smoking and obesity rates), was significantly higher in association with greater non-methane VOC emissions from compressor stations. Twelve individual VOCs were also associated with significantly higher adjusted mortality. Results provide preliminary evidence that compressor stations along natural gas pipelines are sources of pollutant exposures that may contribute to adverse human health outcomes.
Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production
Wollin et al., May 2020
Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production
Klaus-Michael Wollin, G. Damm, H. Foth, A. Freyberger, T. Gebel, A. Mangerich, U. Gundert-Remy, F. Partosch, C. Röhl, T. Schupp, Jan G. Hengstler (2020). Archives of Toxicology, . 10.1007/s00204-020-02758-7
Abstract:
The use of hydraulic fracturing (HF) to extract oil and natural gas has increased, along with intensive discussions on the associated risks to human health. Three technical processes should be differentiated when evaluating human health risks, namely (1) drilling of the borehole, (2) hydraulic stimulation, and (3) gas or oil production. During the drilling phase, emissions such as N Ox, NMVOCs (non-methane volatile organic compounds) as precursors for tropospheric ozone formation, and SOx have been shown to be higher compared to the subsequent phases. In relation to hydraulic stimulation, the toxicity of frac fluids is of relevance. More than 1100 compounds have been identified as components. A trend is to use fewer, less hazardous and more biodegradable substances; however, the use of hydrocarbons, such as kerosene and diesel, is still allowed in the USA. Methane in drinking water is of low toxicological relevance but may indicate inadequate integrity of the gas well. There is a great concern regarding the contamination of ground- and surface water during the production phase. Water that flows to the surface from oil and gas wells, so-called ‘produced water’, represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water. Particularly critical is the use of produced water for watering of agricultural areas, where persistent compounds may accumulate. Air contamination can occur as a result of several HF-associated activities. In addition to BTEX, 20 HF-associated air contaminants are group 1A or 1B carcinogens according to the IARC. In the U.S., oil and gas production (including conventional production) represents the second largest source of anthropogenic methane emissions. High-quality epidemiological studies are required, especially in light of recent observations of an association between childhood leukemia and multiple myeloma in the neighborhood of oil and gas production sites. In conclusion, (1) strong evidence supports the conclusion that frac fluids can lead to local environmental contamination; (2) while changes in the chemical composition of soil, water and air are likely to occur, the increased levels are still often below threshold values for safety; (3) point source pollution due to poor maintenance of wells and pipelines can be monitored and remedied; (4) risk assessment should be based on both hazard and exposure evaluation; (5) while the concentrations of frac fluid chemicals are low, some are known carcinogens; therefore, thorough, well-designed studies are needed to assess the risk to human health with high certainty; (6) HF can represent a health risk via long-lasting contamination of soil and water, when strict safety measures are not rigorously applied.
The use of hydraulic fracturing (HF) to extract oil and natural gas has increased, along with intensive discussions on the associated risks to human health. Three technical processes should be differentiated when evaluating human health risks, namely (1) drilling of the borehole, (2) hydraulic stimulation, and (3) gas or oil production. During the drilling phase, emissions such as N Ox, NMVOCs (non-methane volatile organic compounds) as precursors for tropospheric ozone formation, and SOx have been shown to be higher compared to the subsequent phases. In relation to hydraulic stimulation, the toxicity of frac fluids is of relevance. More than 1100 compounds have been identified as components. A trend is to use fewer, less hazardous and more biodegradable substances; however, the use of hydrocarbons, such as kerosene and diesel, is still allowed in the USA. Methane in drinking water is of low toxicological relevance but may indicate inadequate integrity of the gas well. There is a great concern regarding the contamination of ground- and surface water during the production phase. Water that flows to the surface from oil and gas wells, so-called ‘produced water’, represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water. Particularly critical is the use of produced water for watering of agricultural areas, where persistent compounds may accumulate. Air contamination can occur as a result of several HF-associated activities. In addition to BTEX, 20 HF-associated air contaminants are group 1A or 1B carcinogens according to the IARC. In the U.S., oil and gas production (including conventional production) represents the second largest source of anthropogenic methane emissions. High-quality epidemiological studies are required, especially in light of recent observations of an association between childhood leukemia and multiple myeloma in the neighborhood of oil and gas production sites. In conclusion, (1) strong evidence supports the conclusion that frac fluids can lead to local environmental contamination; (2) while changes in the chemical composition of soil, water and air are likely to occur, the increased levels are still often below threshold values for safety; (3) point source pollution due to poor maintenance of wells and pipelines can be monitored and remedied; (4) risk assessment should be based on both hazard and exposure evaluation; (5) while the concentrations of frac fluid chemicals are low, some are known carcinogens; therefore, thorough, well-designed studies are needed to assess the risk to human health with high certainty; (6) HF can represent a health risk via long-lasting contamination of soil and water, when strict safety measures are not rigorously applied.
Environmental surveillance and adverse neonatal health outcomes in foals born near unconventional natural gas development activity
Mullen et al., May 2020
Environmental surveillance and adverse neonatal health outcomes in foals born near unconventional natural gas development activity
Kathleen R. Mullen, Brianna N. Rivera, Lane G. Tidwell, Renata Ivanek, Kim A. Anderson, Dorothy M. Ainsworth (2020). Science of The Total Environment, 138497. 10.1016/j.scitotenv.2020.138497
Abstract:
Studies of neonatal health risks of unconventional natural gas development (UNGD) have not included comprehensive assessments of environmental chemical exposures. We investigated a clustering of dysphagic cases in neonatal foals born between 2014 and 2016 in an area of active UNGD in Pennsylvania (PA),USA. We evaluated equine biological data and environmental exposures on the affected PA farm and an unaffected New York (NY) farm owned by the same proprietor. Dams either spent their entire gestation on one farm or moved to the other farm in late gestation. Over the 21-month study period, physical examinations and blood/tissue samples were obtained from mares and foals on each farm. Grab samples of water, pasture soil and feed were collected; continuous passive sampling of air and water for polycyclic aromatic hydrocarbons was performed. Dysphagia was evaluated as a binary variable; logistic regression was used to identify risk factors. Sixty-five foals were born, 17 (all from PA farm) were dysphagic. Odds of dysphagia increased with the dam residing on the PA farm for each additional month of gestation (OR = 1.4, 95% CI 1.2, 1.7, p = 6.0E-04). Males were more likely to be born dysphagic (OR = 5.5, 95% CI 1.2, 24.5, p = 0.03) than females. Prior to installation of a water filtration/treatment system, PA water concentrations of 3,6-dimethylphenanthrene (p = 6.0E-03), fluoranthene (p = 0.03), pyrene (p = 0.02) and triphenylene (p = 0.01) exceeded those in NY water. Compared to NY farm water, no concentrations of PAHs were higher in PA following installation of the water filtration/treatment system. We provide evidence of an uncommon adverse health outcome (dysphagia) in foals born near UNGD that was eliminated in subsequent years (2017–2019) following environmental management changes. Notably, this study demonstrates that domestic large animals such as horses can serve as important sentinels for human health risks associated with UNGD activities.
Studies of neonatal health risks of unconventional natural gas development (UNGD) have not included comprehensive assessments of environmental chemical exposures. We investigated a clustering of dysphagic cases in neonatal foals born between 2014 and 2016 in an area of active UNGD in Pennsylvania (PA),USA. We evaluated equine biological data and environmental exposures on the affected PA farm and an unaffected New York (NY) farm owned by the same proprietor. Dams either spent their entire gestation on one farm or moved to the other farm in late gestation. Over the 21-month study period, physical examinations and blood/tissue samples were obtained from mares and foals on each farm. Grab samples of water, pasture soil and feed were collected; continuous passive sampling of air and water for polycyclic aromatic hydrocarbons was performed. Dysphagia was evaluated as a binary variable; logistic regression was used to identify risk factors. Sixty-five foals were born, 17 (all from PA farm) were dysphagic. Odds of dysphagia increased with the dam residing on the PA farm for each additional month of gestation (OR = 1.4, 95% CI 1.2, 1.7, p = 6.0E-04). Males were more likely to be born dysphagic (OR = 5.5, 95% CI 1.2, 24.5, p = 0.03) than females. Prior to installation of a water filtration/treatment system, PA water concentrations of 3,6-dimethylphenanthrene (p = 6.0E-03), fluoranthene (p = 0.03), pyrene (p = 0.02) and triphenylene (p = 0.01) exceeded those in NY water. Compared to NY farm water, no concentrations of PAHs were higher in PA following installation of the water filtration/treatment system. We provide evidence of an uncommon adverse health outcome (dysphagia) in foals born near UNGD that was eliminated in subsequent years (2017–2019) following environmental management changes. Notably, this study demonstrates that domestic large animals such as horses can serve as important sentinels for human health risks associated with UNGD activities.
A Multi-Region Analysis of Shale Drilling Activity and Rates of Sexually Transmitted Infections in the United States
Johnson et al., January 2020
A Multi-Region Analysis of Shale Drilling Activity and Rates of Sexually Transmitted Infections in the United States
Nicholaus P. Johnson, Joshua L. Warren, Elise G. Elliott, Linda M. Niccolai, Nicole C. Deziel (2020). Sexually Transmitted Diseases, . 10.1097/OLQ.0000000000001127
Abstract:
Background Fossil fuel extraction from deep shale rock formations using new drilling technologies such as hydraulic fracturing, has rapidly increased in the Unites States (U.S.) over the past decade. Increases in nonlocal, specialized workers to meet the demands of this complex industry have been suggested to influence rates of sexually transmitted infections (STI) in counties with shale drilling activity; these associations may vary geographically. In this multi-region analysis, we examine the associations between shale drilling activity and rates of three reportable STI in Colorado, North Dakota, and Texas, states with active shale drilling. Methods We obtained annual reported rates of chlamydia, gonorrhea, and syphilis from the Centers for Disease Control and Prevention (CDC), number of active shale wells from Enverus (formerly known as DrillingInfo), and sociodemographic covariates from the U.S. Census Bureau. We used multivariable mixed-effects Poisson regression modeling to estimate rate ratios (RR) with 95% confidence intervals (CIs) adjusted for potential confounders and secular trends. Results In Texas, county-years with high drilling activity had 10% increased rates of chlamydia (RR=1.10; 95% CI=1.04-1.17) and 15% increased rates of gonorrhea (RR=1.15; 95% CI = 1.04-1.28), compared to county-years with no drilling. No statistically significant associations were reported for syphilis or for any STIs in Colorado or North Dakota. Conclusions Associations between shale drilling and chlamydia and gonorrhea in Texas may reflect increased risk in areas with higher drilling activity and a greater number of major metropolitan areas. Inter-state differences highlight the need for local epidemiology to prioritize community health policies.
Background Fossil fuel extraction from deep shale rock formations using new drilling technologies such as hydraulic fracturing, has rapidly increased in the Unites States (U.S.) over the past decade. Increases in nonlocal, specialized workers to meet the demands of this complex industry have been suggested to influence rates of sexually transmitted infections (STI) in counties with shale drilling activity; these associations may vary geographically. In this multi-region analysis, we examine the associations between shale drilling activity and rates of three reportable STI in Colorado, North Dakota, and Texas, states with active shale drilling. Methods We obtained annual reported rates of chlamydia, gonorrhea, and syphilis from the Centers for Disease Control and Prevention (CDC), number of active shale wells from Enverus (formerly known as DrillingInfo), and sociodemographic covariates from the U.S. Census Bureau. We used multivariable mixed-effects Poisson regression modeling to estimate rate ratios (RR) with 95% confidence intervals (CIs) adjusted for potential confounders and secular trends. Results In Texas, county-years with high drilling activity had 10% increased rates of chlamydia (RR=1.10; 95% CI=1.04-1.17) and 15% increased rates of gonorrhea (RR=1.15; 95% CI = 1.04-1.28), compared to county-years with no drilling. No statistically significant associations were reported for syphilis or for any STIs in Colorado or North Dakota. Conclusions Associations between shale drilling and chlamydia and gonorrhea in Texas may reflect increased risk in areas with higher drilling activity and a greater number of major metropolitan areas. Inter-state differences highlight the need for local epidemiology to prioritize community health policies.
Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas
et al., November 2024
Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas
, , , , (2024). Environmental Health Perspectives, 077003. 10.1289/EHP6394
Abstract:
Background:Prior studies suggest exposure to oil and gas development (OGD) adversely affects birth outcomes, but no studies have examined flaring—the open combustion of natural gas—from OGD.Objectives:We investigated whether residential proximity to flaring from OGD was associated with shorter gestation and reduced fetal growth in the Eagle Ford Shale of south Texas.Methods:We conducted a retrospective cohort study using administrative birth records from 2012 to 2015 (N=23,487N=23,487) and satellite observations of flaring activity during pregnancy within 5km5km of maternal residence. Multivariate logistic and linear regression models were used to estimate associations between four outcomes (preterm birth, small-for-gestational age, continuous gestational age, and term birthweight) and exposure to a low (1–9) or high (≥10≥10) number of nightly flare events, as compared with no exposure, while controlling for known maternal risk factors. We also examined associations with the number of oil and gas wells within 5km5km using data from DrillingInfo (now Enverus).Results:Exposure to a high number of nightly flare events was associated with a 50% higher odds of preterm birth [odds ratio (OR)=1.50odds ratio (OR)=1.50 (95% CI: 1.23, 1.83)] and shorter gestation [mean difference=−1.9mean difference=−1.9 (95% CI: −2.8−2.8, −0.9−0.9) d] compared with no exposure. Effect estimates were slightly reduced after adjustment for the number of wells within 5km5km. In stratified models these associations were present only among Hispanic women. Flaring and fetal growth outcomes were not significantly associated. Women exposed to a high number of wells (fourth quartile, ≥27≥27) vs. no wells within 5km5km had a higher odds of preterm birth [OR=1.31OR=1.31 (95% CI: 1.14, 1.49)], shorter gestation [−1.3−1.3 (95% CI: −1.9−1.9, −0.8−0.8) d], and lower average birthweight [−19.4−19.4 (95% CI: −36.7−36.7, −2.0−2.0) g].Discussion:Our study suggests exposure to flaring from OGD is associated with an increased risk of preterm birth. Our findings need to be confirmed in other populations. https://doi.org/10.1289/EHP6394
Background:Prior studies suggest exposure to oil and gas development (OGD) adversely affects birth outcomes, but no studies have examined flaring—the open combustion of natural gas—from OGD.Objectives:We investigated whether residential proximity to flaring from OGD was associated with shorter gestation and reduced fetal growth in the Eagle Ford Shale of south Texas.Methods:We conducted a retrospective cohort study using administrative birth records from 2012 to 2015 (N=23,487N=23,487) and satellite observations of flaring activity during pregnancy within 5km5km of maternal residence. Multivariate logistic and linear regression models were used to estimate associations between four outcomes (preterm birth, small-for-gestational age, continuous gestational age, and term birthweight) and exposure to a low (1–9) or high (≥10≥10) number of nightly flare events, as compared with no exposure, while controlling for known maternal risk factors. We also examined associations with the number of oil and gas wells within 5km5km using data from DrillingInfo (now Enverus).Results:Exposure to a high number of nightly flare events was associated with a 50% higher odds of preterm birth [odds ratio (OR)=1.50odds ratio (OR)=1.50 (95% CI: 1.23, 1.83)] and shorter gestation [mean difference=−1.9mean difference=−1.9 (95% CI: −2.8−2.8, −0.9−0.9) d] compared with no exposure. Effect estimates were slightly reduced after adjustment for the number of wells within 5km5km. In stratified models these associations were present only among Hispanic women. Flaring and fetal growth outcomes were not significantly associated. Women exposed to a high number of wells (fourth quartile, ≥27≥27) vs. no wells within 5km5km had a higher odds of preterm birth [OR=1.31OR=1.31 (95% CI: 1.14, 1.49)], shorter gestation [−1.3−1.3 (95% CI: −1.9−1.9, −0.8−0.8) d], and lower average birthweight [−19.4−19.4 (95% CI: −36.7−36.7, −2.0−2.0) g].Discussion:Our study suggests exposure to flaring from OGD is associated with an increased risk of preterm birth. Our findings need to be confirmed in other populations. https://doi.org/10.1289/EHP6394
Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006–2015 Births
et al., November 2024
Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006–2015 Births
, , , (2024). Environmental Health Perspectives, 067001. 10.1289/EHP5842
Abstract:
Background:Studies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of oil wells or inactive wells exist, and none in California.Objective:Our study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California.Methods:We conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2–5 wells, 6+ wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1–100 BOE/day, >100 BOE/day>100 BOE/day). We used generalized estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type.Results:Adjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100 BOE/day>100 BOE/day) vs. no production throughout pregnancy was associated with increased odds of LBW [odds ratio (OR)=1.40(OR)=1.40, 95% confidence interval (CI): 1.14, 1.71] and SGA (OR=1.22OR=1.22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = −36 grams, 95% CI: −54, −17), but not with PTB (OR=1.03OR=1.03, 95% CI: 0.91, 1.18).Conclusion:Proximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842
Background:Studies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of oil wells or inactive wells exist, and none in California.Objective:Our study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California.Methods:We conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2–5 wells, 6+ wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1–100 BOE/day, >100 BOE/day>100 BOE/day). We used generalized estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type.Results:Adjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100 BOE/day>100 BOE/day) vs. no production throughout pregnancy was associated with increased odds of LBW [odds ratio (OR)=1.40(OR)=1.40, 95% confidence interval (CI): 1.14, 1.71] and SGA (OR=1.22OR=1.22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = −36 grams, 95% CI: −54, −17), but not with PTB (OR=1.03OR=1.03, 95% CI: 0.91, 1.18).Conclusion:Proximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842
Fracking and infant mortality: fresh evidence from Oklahoma
Apergis et al., October 2019
Fracking and infant mortality: fresh evidence from Oklahoma
Nicholas Apergis, Tasawar Hayat, Tareq Saeed (2019). Environmental Science and Pollution Research, . 10.1007/s11356-019-06478-z
Abstract:
This paper explores the impact of shale gas and oil fracking wells on infants’ health at birth across Oklahoma counties. The empirical analysis makes use of the Dumitrescu-Hurlin causality test, as well as the (long-run) Pooled Mean Group method. The results clearly document that there is a unidirectional relationship between fracking activities and three alternative indexes of infants’ health at birth, as well as a significant impact of fracking on infants’ health indicators. In addition, the results illustrate the substantial role of fracking through the drinking water quality channel.
This paper explores the impact of shale gas and oil fracking wells on infants’ health at birth across Oklahoma counties. The empirical analysis makes use of the Dumitrescu-Hurlin causality test, as well as the (long-run) Pooled Mean Group method. The results clearly document that there is a unidirectional relationship between fracking activities and three alternative indexes of infants’ health at birth, as well as a significant impact of fracking on infants’ health indicators. In addition, the results illustrate the substantial role of fracking through the drinking water quality channel.
An integrated hazard screening and indexing system for hydraulic fracturing chemical assessment
Hu et al., October 2019
An integrated hazard screening and indexing system for hydraulic fracturing chemical assessment
Guangji Hu, Haroon R. Mian, Kasun Hewage, Rehan Sadiq (2019). Process Safety and Environmental Protection, 126-139. 10.1016/j.psep.2019.08.002
Abstract:
Various chemicals used in hydraulic fracturing have raised environmental and human health (EHH) concerns regarding water resources contamination, leading to the transition towards the use of chemicals with minimum EHH hazards. Chemical hazard screening and indexing approaches have been used to measure the chemical hazard of hydraulic fracturing, and each approach is associated with inherent advantages and limitations. In this study, the two chemical hazard assessment approaches were discussed, and an integrated chemical hazard screening and indexing system was developed to combine the strengths of the two approaches. The integrated system was applied to assess the EHH hazards of representative hydraulic fracturing chemicals used in British Columbia, Canada. The hazard screening results showed that more than half of the ingredients and additives were classified into high hazard groups. Moreover, the integrated system generated more critical hazard assessment results than two hazard indexing systems, revealing that using the individual hazard indexing approach could result in underestimated EHH hazards for chemicals. The integrated system can significantly improve the data confidence levels of hazard assessment results compared to a previously developed indexing system. The integrated system can also help formulate fracturing fluids with low EHH hazards by identifying ingredients of high hazard concerns.
Various chemicals used in hydraulic fracturing have raised environmental and human health (EHH) concerns regarding water resources contamination, leading to the transition towards the use of chemicals with minimum EHH hazards. Chemical hazard screening and indexing approaches have been used to measure the chemical hazard of hydraulic fracturing, and each approach is associated with inherent advantages and limitations. In this study, the two chemical hazard assessment approaches were discussed, and an integrated chemical hazard screening and indexing system was developed to combine the strengths of the two approaches. The integrated system was applied to assess the EHH hazards of representative hydraulic fracturing chemicals used in British Columbia, Canada. The hazard screening results showed that more than half of the ingredients and additives were classified into high hazard groups. Moreover, the integrated system generated more critical hazard assessment results than two hazard indexing systems, revealing that using the individual hazard indexing approach could result in underestimated EHH hazards for chemicals. The integrated system can significantly improve the data confidence levels of hazard assessment results compared to a previously developed indexing system. The integrated system can also help formulate fracturing fluids with low EHH hazards by identifying ingredients of high hazard concerns.
Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development
Hess et al., January 1970
Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development
Judy Wendt Hess, Gerald Bachler, Fayaz Momin, Krystal Sexton (1970). International Journal of Environmental Research and Public Health, . 10.3390/ijerph16173055
Abstract:
Recent studies of unconventional resource development (URD) and adverse health effects have been limited by distance-based exposure surrogates. Our study compared exposure classifications between air pollutant concentrations and "well activity" (WA) metrics, which are distance-based exposure proxies used in Marcellus-area studies to reflect variation in time and space of residential URD activity. We compiled Pennsylvania air monitoring data for benzene, carbon monoxide, nitrogen dioxide, ozone, fine particulates and sulfur dioxide, and combined this with data on nearly 9000 Pennsylvania wells. We replicated WA calculations using geo-coordinates of monitors to represent residences and compared exposure categories from air measurements and WA at the site of each monitor. There was little agreement between the two methods for the pollutants included in the analysis, with most weighted kappa coefficients between -0.1 and 0.1. The exposure categories agreed for about 25% of the observations and assigned inverse categories 16%-29% of the time, depending on the pollutant. Our results indicate that WA measures did not adequately distinguish categories of air pollutant exposures and employing them in epidemiology studies can result in misclassification of exposure. This underscores the need for more robust exposure assessment in future analyses and cautious interpretation of these existing studies.
Recent studies of unconventional resource development (URD) and adverse health effects have been limited by distance-based exposure surrogates. Our study compared exposure classifications between air pollutant concentrations and "well activity" (WA) metrics, which are distance-based exposure proxies used in Marcellus-area studies to reflect variation in time and space of residential URD activity. We compiled Pennsylvania air monitoring data for benzene, carbon monoxide, nitrogen dioxide, ozone, fine particulates and sulfur dioxide, and combined this with data on nearly 9000 Pennsylvania wells. We replicated WA calculations using geo-coordinates of monitors to represent residences and compared exposure categories from air measurements and WA at the site of each monitor. There was little agreement between the two methods for the pollutants included in the analysis, with most weighted kappa coefficients between -0.1 and 0.1. The exposure categories agreed for about 25% of the observations and assigned inverse categories 16%-29% of the time, depending on the pollutant. Our results indicate that WA measures did not adequately distinguish categories of air pollutant exposures and employing them in epidemiology studies can result in misclassification of exposure. This underscores the need for more robust exposure assessment in future analyses and cautious interpretation of these existing studies.
Maryland is not for Shale: Scientific and public anxieties of predicting health impacts of fracking
Thurka Sangaramoorthy, November 2018
Maryland is not for Shale: Scientific and public anxieties of predicting health impacts of fracking
Thurka Sangaramoorthy (2018). The Extractive Industries and Society, . 10.1016/j.exis.2018.11.003
Abstract:
In 2011, Maryland established the Marcellus Shale Safe Drilling Initiative to determine whether and how gas production in the state could be accomplished without causing unacceptable risks to public health, safety, natural resources, and the environment. This initiative required a statewide health impact assessment of unconventional natural gas development and production via hydraulic fracturing (i.e., fracking). Increasing number of studies have shown that fracking has significant potential to impact health and non-health outcomes. However, because of its rapid development, there is a lack of substantive research related to the public health effects of fracking. I discuss my firsthand experiences as a medical anthropologist and public health researcher on a multi-disciplinary research team tasked with conducting Maryland’s first health impact assessment to determine the potential public health impacts associated with fracking. I focus on how fracking, as a relatively new economically viable source of energy and an emergent focus of study, brings about public and scientific anxieties, and how these anxieties shape subsequent environmental and health policy decision making processes. I reflect on the potential role of social scientists in matters of scientific knowledge production and resulting policy decisions and the broader implications of such engagement for public social science.
In 2011, Maryland established the Marcellus Shale Safe Drilling Initiative to determine whether and how gas production in the state could be accomplished without causing unacceptable risks to public health, safety, natural resources, and the environment. This initiative required a statewide health impact assessment of unconventional natural gas development and production via hydraulic fracturing (i.e., fracking). Increasing number of studies have shown that fracking has significant potential to impact health and non-health outcomes. However, because of its rapid development, there is a lack of substantive research related to the public health effects of fracking. I discuss my firsthand experiences as a medical anthropologist and public health researcher on a multi-disciplinary research team tasked with conducting Maryland’s first health impact assessment to determine the potential public health impacts associated with fracking. I focus on how fracking, as a relatively new economically viable source of energy and an emergent focus of study, brings about public and scientific anxieties, and how these anxieties shape subsequent environmental and health policy decision making processes. I reflect on the potential role of social scientists in matters of scientific knowledge production and resulting policy decisions and the broader implications of such engagement for public social science.
Fuzzy clustering analysis of hydraulic fracturing additives for environmental and human health risk mitigation
Hu et al., October 2018
Fuzzy clustering analysis of hydraulic fracturing additives for environmental and human health risk mitigation
Guangji Hu, Manjot Kaur, Kasun Hewage, Rehan Sadiq (2018). Clean Technologies and Environmental Policy, . 10.1007/s10098-018-1614-3
Abstract:
Chemical additives used in hydraulic fracturing (HF) for unconventional natural gas production can be a risk to environmental and human health (EHH). The EHH risk is affected by three factors: the chemical hazard measured, the certainty of the measured hazard, and the use frequencies of additives. Limited studies have holistically assessed the EHH risks of HF additives. This study qualitatively analyzed the EHH risks of 105 representative HF additives used in British Columbia, Canada, based on the three previously listed factors using a fuzzy clustering analysis approach. The performance of additives on these factors was converted into indices using an indexing system. The indices were grouped into seven clusters according to their relative similarities. The EHH risk of each cluster was interpreted based on the resulting indices. Results show that additives grouped in clusters 7 and 2 have relatively high EHH risks, which require special attention in HF operations. Clusters 4, 1, and 5 were identified as having moderate EHH risks, while clusters 6 and 3 are of low EHH risk concerns. Many iron control agents were classified into cluster 7, indicating that this type of additives is associated with a high EHH risk. Many friction reducers and gelling agents were classified into cluster 4 characterized by the highest hazard uncertainty. Assessment of hypothetical fracturing fluids shows that using additives grouped in clusters with a low risk could help mitigate the EHH impacts posed by HF chemicals.Graphical abstract Open image in new window
Chemical additives used in hydraulic fracturing (HF) for unconventional natural gas production can be a risk to environmental and human health (EHH). The EHH risk is affected by three factors: the chemical hazard measured, the certainty of the measured hazard, and the use frequencies of additives. Limited studies have holistically assessed the EHH risks of HF additives. This study qualitatively analyzed the EHH risks of 105 representative HF additives used in British Columbia, Canada, based on the three previously listed factors using a fuzzy clustering analysis approach. The performance of additives on these factors was converted into indices using an indexing system. The indices were grouped into seven clusters according to their relative similarities. The EHH risk of each cluster was interpreted based on the resulting indices. Results show that additives grouped in clusters 7 and 2 have relatively high EHH risks, which require special attention in HF operations. Clusters 4, 1, and 5 were identified as having moderate EHH risks, while clusters 6 and 3 are of low EHH risk concerns. Many iron control agents were classified into cluster 7, indicating that this type of additives is associated with a high EHH risk. Many friction reducers and gelling agents were classified into cluster 4 characterized by the highest hazard uncertainty. Assessment of hypothetical fracturing fluids shows that using additives grouped in clusters with a low risk could help mitigate the EHH impacts posed by HF chemicals.Graphical abstract Open image in new window
Unconventional natural gas development and pediatric asthma hospitalizations in Pennsylvania
Willis et al., October 2018
Unconventional natural gas development and pediatric asthma hospitalizations in Pennsylvania
Mary D. Willis, Todd A. Jusko, Jill S. Halterman, Elaine L. Hill (2018). Environmental Research, 402-408. 10.1016/j.envres.2018.06.022
Abstract:
Background Pediatric asthma is a common chronic condition that can be exacerbated by environmental exposures, and unconventional natural gas development (UNGD) has been associated with decreased community air quality. This study aims to quantify the association between UNGD and pediatric asthma hospitalizations. Methods We compare pediatric asthma hospitalizations among zip codes with and without exposure to UNGD between 2003 and 2014 using a difference-in-differences panel analysis. Our UNGD exposure metrics include cumulative and contemporaneous drilling as well as reported air emissions by site. Results We observed consistently elevated odds of hospitalizations in the top tertile of pediatric patients exposed to unconventional drilling compared with their unexposed peers. During the same quarter a well was drilled, we find a 25% increase (95% CI: 1.07, 1.47) in the odds of being hospitalized for asthma. Ever-establishment of an UNGD well within a zip code was associated with a 1.19 (95% CI: 1.04, 1.36) increased odds of a pediatric asthma hospitalization. Our results further demonstrate that increasing specific air emissions from UNGD sites are associated with increased risks of pediatric asthma hospitalizations (e.g. 2,2,4-trimethylpentane, formaldehyde, x-hexane). These results hold across multiple age groups and sensitivity analyses. Conclusions Community-level UNGD exposure metrics were associated with increased odds of pediatric asthma-related hospitalization among young children and adolescents. This study provides evidence that additional regulations may be necessary to protect children's respiratory health from UNGD activities.
Background Pediatric asthma is a common chronic condition that can be exacerbated by environmental exposures, and unconventional natural gas development (UNGD) has been associated with decreased community air quality. This study aims to quantify the association between UNGD and pediatric asthma hospitalizations. Methods We compare pediatric asthma hospitalizations among zip codes with and without exposure to UNGD between 2003 and 2014 using a difference-in-differences panel analysis. Our UNGD exposure metrics include cumulative and contemporaneous drilling as well as reported air emissions by site. Results We observed consistently elevated odds of hospitalizations in the top tertile of pediatric patients exposed to unconventional drilling compared with their unexposed peers. During the same quarter a well was drilled, we find a 25% increase (95% CI: 1.07, 1.47) in the odds of being hospitalized for asthma. Ever-establishment of an UNGD well within a zip code was associated with a 1.19 (95% CI: 1.04, 1.36) increased odds of a pediatric asthma hospitalization. Our results further demonstrate that increasing specific air emissions from UNGD sites are associated with increased risks of pediatric asthma hospitalizations (e.g. 2,2,4-trimethylpentane, formaldehyde, x-hexane). These results hold across multiple age groups and sensitivity analyses. Conclusions Community-level UNGD exposure metrics were associated with increased odds of pediatric asthma-related hospitalization among young children and adolescents. This study provides evidence that additional regulations may be necessary to protect children's respiratory health from UNGD activities.
Truck and Multivehicle Truck Accidents with Injuries Near Colorado Oil and Gas Operations
Blair et al., August 2018
Truck and Multivehicle Truck Accidents with Injuries Near Colorado Oil and Gas Operations
Benjamin Blair, John Hughes, William Allshouse, Lisa McKenzie, John Adgate, Benjamin D. Blair, John Hughes, William B. Allshouse, Lisa M. McKenzie, John L. Adgate (2018). International Journal of Environmental Research and Public Health, 1861. 10.3390/ijerph15091861
Abstract:
Unconventional and conventional oil and gas (O&G) operations raise public health concerns, such as the potential impacts from trucking activity in communities that host these operations. In this work, we used two approaches to evaluate accidents in relation to O&G activities in the State of Colorado. First, we calculated the rate of truck accidents by computing the ratio of accident count and county population. When comparing counties with increased O&G operations to counties with less activity, we found that counties with more activity have greater rates of truck traffic accidents per capita (Rate Ratio = 1.07, p < 0.05, 95% CI: 1.01–1.13). Second, we laid a grid over the eleven counties of interest and counted, for each cell, the number of truck accidents, the number of multivehicle accidents with injuries, the number of homes, and the number of O&G wells. We then applied hurdle count models, using the accident counts as the outcomes and the number of homes and number of wells as independent variables. We found that both independent variables are significant predictors of truck accidents and multivehicle truck accidents. These accidents are of concern since they can have an impact on the people who live near O&G operations.
Unconventional and conventional oil and gas (O&G) operations raise public health concerns, such as the potential impacts from trucking activity in communities that host these operations. In this work, we used two approaches to evaluate accidents in relation to O&G activities in the State of Colorado. First, we calculated the rate of truck accidents by computing the ratio of accident count and county population. When comparing counties with increased O&G operations to counties with less activity, we found that counties with more activity have greater rates of truck traffic accidents per capita (Rate Ratio = 1.07, p < 0.05, 95% CI: 1.01–1.13). Second, we laid a grid over the eleven counties of interest and counted, for each cell, the number of truck accidents, the number of multivehicle accidents with injuries, the number of homes, and the number of O&G wells. We then applied hurdle count models, using the accident counts as the outcomes and the number of homes and number of wells as independent variables. We found that both independent variables are significant predictors of truck accidents and multivehicle truck accidents. These accidents are of concern since they can have an impact on the people who live near O&G operations.
Prioritization of reproductive toxicants in unconventional oil and gas operations using a multi-country regulatory data-driven hazard assessment
Inayat-Hussain et al., August 2018
Prioritization of reproductive toxicants in unconventional oil and gas operations using a multi-country regulatory data-driven hazard assessment
Salmaan H. Inayat-Hussain, Masao Fukumura, A. Muiz Aziz, Chai Meng Jin, Low Wei Jin, Rolando Garcia-Milian, Vasilis Vasiliou, Nicole C. Deziel (2018). Environment International, 348-358. 10.1016/j.envint.2018.05.010
Abstract:
Background Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. Methods GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. Results We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Conclusions Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.
Background Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. Methods GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. Results We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Conclusions Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.
Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025
Fann et al., July 2018
Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025
Neal Fann, Kirk R. Baker, Elizabeth A. W. Chan, Alison Eyth, Alexander Macpherson, Elizabeth Miller, Jennifer Snyder (2018). Environmental Science & Technology, . 10.1021/acs.est.8b02050
Abstract:
Incomplete information regarding emissions from oil and natural gas production has historically made it challenging to characterize the air quality or air pollution-related health impacts for this sector in the United States. Using an emissions inventory for the oil and natural gas sector that reflects information regarding the level and distribution of PM2.5 and ozone precursor emissions, we simulate annual mean PM2.5 and summer season average daily 8 h maximum ozone concentrations with the Comprehensive Air-Quality Model with extensions (CAMx). We quantify the incidence and economic value of PM2.5 and ozone health related effects using the environmental Benefits Mapping and Analysis Program (BenMAP). We find that ambient concentrations of PM2.5 and ozone, and associated health impacts, are highest in a handful of states including Colorado, Pennsylvania, Texas and West Virginia. On a per-ton basis, the benefits of reducing PM2.5 precursor emissions from this sector vary by pollutant species, and range from between $6,300 and $320,000, while the value of reducing ozone precursors ranges from $500 to $8,200 in the year 2025 (2015$).
Incomplete information regarding emissions from oil and natural gas production has historically made it challenging to characterize the air quality or air pollution-related health impacts for this sector in the United States. Using an emissions inventory for the oil and natural gas sector that reflects information regarding the level and distribution of PM2.5 and ozone precursor emissions, we simulate annual mean PM2.5 and summer season average daily 8 h maximum ozone concentrations with the Comprehensive Air-Quality Model with extensions (CAMx). We quantify the incidence and economic value of PM2.5 and ozone health related effects using the environmental Benefits Mapping and Analysis Program (BenMAP). We find that ambient concentrations of PM2.5 and ozone, and associated health impacts, are highest in a handful of states including Colorado, Pennsylvania, Texas and West Virginia. On a per-ton basis, the benefits of reducing PM2.5 precursor emissions from this sector vary by pollutant species, and range from between $6,300 and $320,000, while the value of reducing ozone precursors ranges from $500 to $8,200 in the year 2025 (2015$).
Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (USA)
McMullin et al., July 2018
Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (USA)
Tami S. McMullin, Alison M. Bamber, Daniel Bon, Daniel I. Vigil, Michael Van Dyke (2018). International Journal of Environmental Research and Public Health, 1500. 10.3390/ijerph15071500
Abstract:
The study objective was to use a preliminary risk based framework to evaluate the sufficiency of existing air data to answer an important public health question in Colorado: Do volatile organic compounds (VOCs) emitted into the air from oil and gas (OG) operations result in exposures to Coloradoans living at or greater than current state setback distances (500 feet) from OG operations at levels that may be harmful to their health? We identified 56 VOCs emitted from OG operations in Colorado and compiled 47 existing air monitoring datasets that measured these VOCs in 34 locations across OG regions. From these data, we estimated acute and chronic exposures and compared these exposures to health guideline levels using maximum and mean air concentrations. Acute and chronic non-cancer hazard quotients were below one for all individual VOCs. Hazard indices combining exposures for all VOCs were slightly above one. Lifetime excess cancer risk estimates for benzene were between 1.0 x 10(-5)-3.6 x 10(-5) and ethylbenzene was 7.3 x 10(-6). This evaluation identified a small sub-set of VOCs, including benzene and n-nonane, which should be prioritized for additional exposure characterization in site-specific studies that collect comprehensive time-series measurements of community scale exposures to better assess community exposures.
The study objective was to use a preliminary risk based framework to evaluate the sufficiency of existing air data to answer an important public health question in Colorado: Do volatile organic compounds (VOCs) emitted into the air from oil and gas (OG) operations result in exposures to Coloradoans living at or greater than current state setback distances (500 feet) from OG operations at levels that may be harmful to their health? We identified 56 VOCs emitted from OG operations in Colorado and compiled 47 existing air monitoring datasets that measured these VOCs in 34 locations across OG regions. From these data, we estimated acute and chronic exposures and compared these exposures to health guideline levels using maximum and mean air concentrations. Acute and chronic non-cancer hazard quotients were below one for all individual VOCs. Hazard indices combining exposures for all VOCs were slightly above one. Lifetime excess cancer risk estimates for benzene were between 1.0 x 10(-5)-3.6 x 10(-5) and ethylbenzene was 7.3 x 10(-6). This evaluation identified a small sub-set of VOCs, including benzene and n-nonane, which should be prioritized for additional exposure characterization in site-specific studies that collect comprehensive time-series measurements of community scale exposures to better assess community exposures.
Residential noise from nearby oil and gas well construction and drilling
Blair et al., May 2018
Residential noise from nearby oil and gas well construction and drilling
Benjamin D. Blair, Stephen Brindley, Eero Dinkeloo, Lisa M. McKenzie, John L. Adgate (2018). Journal of Exposure Science & Environmental Epidemiology, 1. 10.1038/s41370-018-0039-8
Abstract:
Public concern about oil and gas (O&G) operations in residential areas is substantial. Noise from construction and drilling related to O&G operations may be greater than other phases of O&G operations; yet the impacts of audible and low-frequency noise during these operations are not extensively explored nor the effects on health well understood. This study documents the noise levels at a multi-well O&G well pad during construction and drilling in a residential area in Colorado. A-weighted (dBA) and C-weighted (dBC) noise measurements were collected at four locations during development over a 3-month period. The maximum 1-min equivalent continuous sound levels over a 1-month period were 60.2 dBA and 80.0 dBC. Overall, 41.1% of daytime and 23.6% of nighttime dBA 1-min equivalent continuous noise measurements were found to exceed 50 dBA, and 97.5% of daytime and 98.3% of nighttime measurements were found to exceed 60 dBC. Noise levels exceeding 50 dBA or 60 dBC may cause annoyance and be detrimental to health; thus, these noise levels have the potential to impact health and noise levels and associated health effects warrant further investigation.
Public concern about oil and gas (O&G) operations in residential areas is substantial. Noise from construction and drilling related to O&G operations may be greater than other phases of O&G operations; yet the impacts of audible and low-frequency noise during these operations are not extensively explored nor the effects on health well understood. This study documents the noise levels at a multi-well O&G well pad during construction and drilling in a residential area in Colorado. A-weighted (dBA) and C-weighted (dBC) noise measurements were collected at four locations during development over a 3-month period. The maximum 1-min equivalent continuous sound levels over a 1-month period were 60.2 dBA and 80.0 dBC. Overall, 41.1% of daytime and 23.6% of nighttime dBA 1-min equivalent continuous noise measurements were found to exceed 50 dBA, and 97.5% of daytime and 98.3% of nighttime measurements were found to exceed 60 dBC. Noise levels exceeding 50 dBA or 60 dBC may cause annoyance and be detrimental to health; thus, these noise levels have the potential to impact health and noise levels and associated health effects warrant further investigation.
Assessing Residential Exposure Risk from Spills of Flowback Water from Marcellus Shale Hydraulic Fracturing Activity
Abualfaraj et al., April 2018
Assessing Residential Exposure Risk from Spills of Flowback Water from Marcellus Shale Hydraulic Fracturing Activity
Noura Abualfaraj, Patrick L. Gurian, Mira S. Olson (2018). International Journal of Environmental Research and Public Health, 727. 10.3390/ijerph15040727
Abstract:
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10−6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10−6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10−6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10−6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10−6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10−6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.
Hazard assessment of hydraulic fracturing chemicals using an indexing method
Hu et al., April 2018
Hazard assessment of hydraulic fracturing chemicals using an indexing method
Guangji Hu, Tianyi Liu, James Hager, Kasun Hewage, Rehan Sadiq (2018). Science of the Total Environment, 281-290. 10.1016/j.scitotenv.2017.11.099
Abstract:
The rapid expansion of unconventional natural gas production has triggered considerable public concerns, particularly regarding environmental and human health (EHH) risks posed by various chemical additives used in hydraulic fracturing (HF) operations. There is a need to assess the potential EHH hazards of additives used in real-world HF operations. In this study, HF additive and fracturing fluid data was acquired, and EHH hazards were assessed using an indexing approach. The indexing system analyzed chemical toxicological data of different ingredients contained within additives and produced an aggregated EHH safety index for each additive, along with an indicator describing the completeness of the chemical toxicological data. The results show that commonly used additives are generally associated with medium-level EHH hazards. In each additive category, ingredients of high EHH concern were identified, and the high hazard designation was primarily attributed to ingredients' high aquatic toxicity and carcinogenic effects. Among all assessed additive categories, iron control agents were identified as the greatest EHH hazards. Lack of information, such as undisclosed ingredients and chemical toxicological data gaps, has resulted in different levels of assessment uncertainties. In particular, friction reducers show the highest data incompleteness with regards to EHH hazards. This study reveals the potential EHH hazards associated with chemicals used in current HF field operations and can provide decision makers with valuable information to facilitate sustainable and responsible unconventional gas production. (c) 2017 Elsevier B.V. All rights reserved.
The rapid expansion of unconventional natural gas production has triggered considerable public concerns, particularly regarding environmental and human health (EHH) risks posed by various chemical additives used in hydraulic fracturing (HF) operations. There is a need to assess the potential EHH hazards of additives used in real-world HF operations. In this study, HF additive and fracturing fluid data was acquired, and EHH hazards were assessed using an indexing approach. The indexing system analyzed chemical toxicological data of different ingredients contained within additives and produced an aggregated EHH safety index for each additive, along with an indicator describing the completeness of the chemical toxicological data. The results show that commonly used additives are generally associated with medium-level EHH hazards. In each additive category, ingredients of high EHH concern were identified, and the high hazard designation was primarily attributed to ingredients' high aquatic toxicity and carcinogenic effects. Among all assessed additive categories, iron control agents were identified as the greatest EHH hazards. Lack of information, such as undisclosed ingredients and chemical toxicological data gaps, has resulted in different levels of assessment uncertainties. In particular, friction reducers show the highest data incompleteness with regards to EHH hazards. This study reveals the potential EHH hazards associated with chemicals used in current HF field operations and can provide decision makers with valuable information to facilitate sustainable and responsible unconventional gas production. (c) 2017 Elsevier B.V. All rights reserved.
Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water
William R. Rish and Edward J. Pfau, April 2018
Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water
William R. Rish and Edward J. Pfau (2018). Risk Analysis, 724-754. 10.1111/risa.12884
Abstract:
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10(-10) and 10(-6) (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10(-10) and 10(-6) (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).
Ambient Non-Methane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks
McKenzie et al., March 2018
Ambient Non-Methane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks
Lisa M. McKenzie, Benjamin D. Blair, John Hughes, William B. Allshouse, Nicola Blake, Detlev Helmig, Pam Milmoe, Hannah Halliday, Donald R. Blake, John L. Adgate (2018). Environmental Science & Technology, . 10.1021/acs.est.7b05983
Abstract:
Ambient Non-Methane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks
Ambient Non-Methane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks
Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.
Torres et al., January 1970
Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.
L. Torres, O. P. Yadav, E. Khan (1970). The Science of the total environment, 867-874. 10.1016/j.scitotenv.2018.01.171
Abstract:
Abstract: Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to...
Abstract: Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to...
Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant
Peters et al., December 2017
Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant
Thomas M. Peters, Patrick T. O'Shaughnessy, Ryan Grant, Ralph Altmaier, Elizabeth Swanton, Jeffrey Falk, David Osterberg, Edith Parker, Nancy G. Wyland, Sinan Sousan, Aimee Liz Stark, Peter S. Thorne (2017). Science of the Total Environment, 1475-1482. 10.1016/j.scitotenv.2017.08.006
Abstract:
Field and laboratory studies were conducted to evaluate the impact of proppant sand mining and processing activities on community particulate matter (PM) concentrations. In field studies outside 17 homes within 800 m of sand mining activities (mining, processing, and transport), respirable (PM4) crystalline silica concentrations were low (<0.4 mu g/m(3)) with crystalline silica detected on 7 samples (2% to 4% of mass). In long-term monitoring at 6 homes within 800 m of sand mining activities, the highest daily mean PM concentrations observed were 14.5 mu g/m(3) for PM2.5 and 37.3 mu g/m(3) for PM10, although infrequent (<3% of time), short-term elevated PM concentrations occurred when wind blew over the facility. In laboratory studies, aerosolized sand was shown to produce respirable-sized particles, containing 6% to 19% crystalline silica. Dispersion modeling of a mine and processing facility indicated that PM10 can exceed standards short distances (<40 m) beyond property lines. Lastly, fence-line PM and crystalline silica concentrations reported to state agencies were substantially below regulatory or guideline values, although several excursions were observed for PM10 when winds blew over the facility. Taken together, community exposures to airborne particulate matter from proppant sand mining activities at sites similar to these appear to be unlikely to cause chronic adverse health conditions. (C) 2017 Elsevier B.V. All rights reserved.
Field and laboratory studies were conducted to evaluate the impact of proppant sand mining and processing activities on community particulate matter (PM) concentrations. In field studies outside 17 homes within 800 m of sand mining activities (mining, processing, and transport), respirable (PM4) crystalline silica concentrations were low (<0.4 mu g/m(3)) with crystalline silica detected on 7 samples (2% to 4% of mass). In long-term monitoring at 6 homes within 800 m of sand mining activities, the highest daily mean PM concentrations observed were 14.5 mu g/m(3) for PM2.5 and 37.3 mu g/m(3) for PM10, although infrequent (<3% of time), short-term elevated PM concentrations occurred when wind blew over the facility. In laboratory studies, aerosolized sand was shown to produce respirable-sized particles, containing 6% to 19% crystalline silica. Dispersion modeling of a mine and processing facility indicated that PM10 can exceed standards short distances (<40 m) beyond property lines. Lastly, fence-line PM and crystalline silica concentrations reported to state agencies were substantially below regulatory or guideline values, although several excursions were observed for PM10 when winds blew over the facility. Taken together, community exposures to airborne particulate matter from proppant sand mining activities at sites similar to these appear to be unlikely to cause chronic adverse health conditions. (C) 2017 Elsevier B.V. All rights reserved.
Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review
Czolowski et al., August 2017
Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review
Eliza D. Czolowski, Renee L. Santoro, Tanja Srebotnjak, Sethb B. C. Shonkoff (2017). Environmental Health Perspectives, UNSP 086004. 10.1289/EHP1535
Abstract:
BACKGROUND: Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health relevant assessment and decision-making. OBJECTIVES: We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. METHODS: We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. RESULTS: Nationally, we estimate that 17.6 million people live within 1,600 m (similar to 1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. CONCLUSIONS: The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells.
BACKGROUND: Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health relevant assessment and decision-making. OBJECTIVES: We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. METHODS: We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. RESULTS: Nationally, we estimate that 17.6 million people live within 1,600 m (similar to 1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. CONCLUSIONS: The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells.
A pilot study to assess residential noise exposure near natural gas compressor stations
Boyle et al., April 2017
A pilot study to assess residential noise exposure near natural gas compressor stations
Meleah D. Boyle, Sutyajeet Soneja, Lesliam Quirós-Alcalá, Laura Dalemarre, Amy R. Sapkota, Thurka Sangaramoorthy, Sacoby Wilson, Donald Milton, Amir Sapkota (2017). PLOS ONE, e0174310. 10.1371/journal.pone.0174310
Abstract:
Background U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. Objectives We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. Methods We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. Results The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Conclusions Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures.
Background U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. Objectives We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. Methods We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. Results The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Conclusions Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures.
Unconventional oil and gas development and risk of childhood leukemia: Assessing the evidence
Elliott et al., January 2017
Unconventional oil and gas development and risk of childhood leukemia: Assessing the evidence
Elise G. Elliott, Pauline Trinh, Xiaomei Ma, Brian P. Leaderer, Mary H. Ward, Nicole C. Deziel (2017). Science of The Total Environment, 138-147. 10.1016/j.scitotenv.2016.10.072
Abstract:
The widespread distribution of unconventional oil and gas (UO&G) wells and other facilities in the United States potentially exposes millions of people to air and water pollutants, including known or suspected carcinogens. Childhood leukemia is a particular concern because of the disease severity, vulnerable population, and short disease latency. A comprehensive review of carcinogens and leukemogens associated with UO&G development is not available and could inform future exposure monitoring studies and human health assessments. The objective of this analysis was to assess the evidence of carcinogenicity of water contaminants and air pollutants related to UO&G development. We obtained a list of 1177 chemicals in hydraulic fracturing fluids and wastewater from the U.S. Environmental Protection Agency and constructed a list of 143 UO&G-related air pollutants through a review of scientific papers published through 2015 using PubMed and ProQuest databases. We assessed carcinogenicity and evidence of increased risk for leukemia/lymphoma of these chemicals using International Agency for Research on Cancer (IARC) monographs. The majority of compounds (> 80%) were not evaluated by IARC and therefore could not be reviewed. Of the 111 potential water contaminants and 29 potential air pollutants evaluated by IARC (119 unique compounds), 49 water and 20 air pollutants were known, probable, or possible human carcinogens (55 unique compounds). A total of 17 water and 11 air pollutants (20 unique compounds) had evidence of increased risk for leukemia/lymphoma, including benzene, 1,3-butadiene, cadmium, diesel exhaust, and several polycyclic aromatic hydrocarbons. Though information on the carcinogenicity of compounds associated with UO&G development was limited, our assessment identified 20 known or suspected carcinogens that could be measured in future studies to advance exposure and risk assessments of cancer-causing agents. Our findings support the need for investigation into the relationship between UO&G development and risk of cancer in general and childhood leukemia in particular.
The widespread distribution of unconventional oil and gas (UO&G) wells and other facilities in the United States potentially exposes millions of people to air and water pollutants, including known or suspected carcinogens. Childhood leukemia is a particular concern because of the disease severity, vulnerable population, and short disease latency. A comprehensive review of carcinogens and leukemogens associated with UO&G development is not available and could inform future exposure monitoring studies and human health assessments. The objective of this analysis was to assess the evidence of carcinogenicity of water contaminants and air pollutants related to UO&G development. We obtained a list of 1177 chemicals in hydraulic fracturing fluids and wastewater from the U.S. Environmental Protection Agency and constructed a list of 143 UO&G-related air pollutants through a review of scientific papers published through 2015 using PubMed and ProQuest databases. We assessed carcinogenicity and evidence of increased risk for leukemia/lymphoma of these chemicals using International Agency for Research on Cancer (IARC) monographs. The majority of compounds (> 80%) were not evaluated by IARC and therefore could not be reviewed. Of the 111 potential water contaminants and 29 potential air pollutants evaluated by IARC (119 unique compounds), 49 water and 20 air pollutants were known, probable, or possible human carcinogens (55 unique compounds). A total of 17 water and 11 air pollutants (20 unique compounds) had evidence of increased risk for leukemia/lymphoma, including benzene, 1,3-butadiene, cadmium, diesel exhaust, and several polycyclic aromatic hydrocarbons. Though information on the carcinogenicity of compounds associated with UO&G development was limited, our assessment identified 20 known or suspected carcinogens that could be measured in future studies to advance exposure and risk assessments of cancer-causing agents. Our findings support the need for investigation into the relationship between UO&G development and risk of cancer in general and childhood leukemia in particular.
Does increased traffic flow around unconventional resource development activities represent the major respiratory hazard to neighboring communities?: knowns and unknowns
Michael A. McCawley, November 2024
Does increased traffic flow around unconventional resource development activities represent the major respiratory hazard to neighboring communities?: knowns and unknowns
Michael A. McCawley (2024). Current Opinion in Pulmonary Medicine, 161-166. 10.1097/MCP.0000000000000361
Abstract:
PURPOSE OF REVIEW: The objective of this review is to demonstrate that the focus on air emissions causing respiratory effects and associated with gas development may be misplaced by attributing those exposures mainly to well pad activities. RECENT FINDINGS: The most recent publications on the health effects of hydraulic fracturing operations seem to parallel findings from studies of diesel particulate exposure near roadways and the health effects associated with those exposures. It seems at least possible that some, if not all, of the respiratory effects associated with unconventional resource development may be traffic-related. Road traffic generated by hydraulic fracturing operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature with 4000 to 6000 vehicles visiting the well pad. SUMMARY: Exposures from well pads diminish rapidly with distances of only a few kilometers but there is evidence showing disease risk multiple kilometers from well pads. This leaves open the possibility that the several thousand vehicle trips per well pad create traffic emissions over wide areas away from the pad. This alternative source of exposure has not previously been well studied but is being more seriously considered.
PURPOSE OF REVIEW: The objective of this review is to demonstrate that the focus on air emissions causing respiratory effects and associated with gas development may be misplaced by attributing those exposures mainly to well pad activities. RECENT FINDINGS: The most recent publications on the health effects of hydraulic fracturing operations seem to parallel findings from studies of diesel particulate exposure near roadways and the health effects associated with those exposures. It seems at least possible that some, if not all, of the respiratory effects associated with unconventional resource development may be traffic-related. Road traffic generated by hydraulic fracturing operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature with 4000 to 6000 vehicles visiting the well pad. SUMMARY: Exposures from well pads diminish rapidly with distances of only a few kilometers but there is evidence showing disease risk multiple kilometers from well pads. This leaves open the possibility that the several thousand vehicle trips per well pad create traffic emissions over wide areas away from the pad. This alternative source of exposure has not previously been well studied but is being more seriously considered.
Assessing dermal exposure risk to workers from flowback water during shale gas hydraulic fracturing activity
Durant et al., August 2016
Assessing dermal exposure risk to workers from flowback water during shale gas hydraulic fracturing activity
Bevin Durant, Noura Abualfaraj, Mira S. Olson, Patrick L. Gurian (2016). Journal of Natural Gas Science and Engineering, . 10.1016/j.jngse.2016.07.051
Abstract:
Hydraulic fracturing is a well stimulation technique used in the production of natural gas from shale. While hydraulic fracturing has been in use for decades as a method for oil and gas recovery, recent advances in horizontal drilling techniques and fracturing fluid production have made previously unattainable natural gas reservoirs accessible and economically recoverable. Flowback water produced from the hydraulic fracturing process can pose environmental and human health risks. The objective of this study is to assess cancer risk following dermal exposure to flowback water among workers at hydraulic fracturing sites. Median, 2.5th percentile, and 97.5th percentile concentrations for high priority constituents in flowback water were collected from a previous study and used to estimate cancer risk from dermal exposure to carcinogenic agents in water compared to a target lifetime cancer risk value of 10−6. Hazard quotients, which compare exposure dose to dose at which no adverse effects are expected, were also calculated for non-carcinogenic components of flowback water and compared to an acceptable value of 1. The cancer risk estimate for median concentrations did not exceed the target lifetime cancer risk of 10−6 except for benzo(a)pyrene where the cancer risk of full hand exposure to flowback water for 3 h (one event per week for 4 years) falls within this range (2.9 × 10−6 – 1.4 × 10−5), which exceeds the target risk level even at the 2.5 percentile value. The upper limit of cancer risk form exposure to heptachlor also exceeds 10−6 in this model. Hazard quotient for barium in the same model exceeds 1 (1.7) and results in a total hazard index of 2.
Hydraulic fracturing is a well stimulation technique used in the production of natural gas from shale. While hydraulic fracturing has been in use for decades as a method for oil and gas recovery, recent advances in horizontal drilling techniques and fracturing fluid production have made previously unattainable natural gas reservoirs accessible and economically recoverable. Flowback water produced from the hydraulic fracturing process can pose environmental and human health risks. The objective of this study is to assess cancer risk following dermal exposure to flowback water among workers at hydraulic fracturing sites. Median, 2.5th percentile, and 97.5th percentile concentrations for high priority constituents in flowback water were collected from a previous study and used to estimate cancer risk from dermal exposure to carcinogenic agents in water compared to a target lifetime cancer risk value of 10−6. Hazard quotients, which compare exposure dose to dose at which no adverse effects are expected, were also calculated for non-carcinogenic components of flowback water and compared to an acceptable value of 1. The cancer risk estimate for median concentrations did not exceed the target lifetime cancer risk of 10−6 except for benzo(a)pyrene where the cancer risk of full hand exposure to flowback water for 3 h (one event per week for 4 years) falls within this range (2.9 × 10−6 – 1.4 × 10−5), which exceeds the target risk level even at the 2.5 percentile value. The upper limit of cancer risk form exposure to heptachlor also exceeds 10−6 in this model. Hazard quotient for barium in the same model exceeds 1 (1.7) and results in a total hazard index of 2.
Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site
Kassotis et al., July 2016
Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site
Christopher D. Kassotis, Luke R. Iwanowicz, Denise M. Akob, Isabelle M. Cozzarelli, Adam C. Mumford, William H. Orem, Susan C. Nagel (2016). Science of The Total Environment, . 10.1016/j.scitotenv.2016.03.113
Abstract:
Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.
Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.
Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania
Maskrey et al., June 2016
Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania
Joshua R. Maskrey, Allison L. Insley, Erin S. Hynds, Julie M. Panko (2016). Environmental Monitoring and Assessment, 1-12. 10.1007/s10661-016-5410-4
Abstract:
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities
Alisa L. Rich and Helen T. Orimoloye, May 2016
Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities
Alisa L. Rich and Helen T. Orimoloye (2016). Environmental Health Insights, 75-82. 10.4137/EHI.S33314
Abstract:
BACKGROUND: The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). OBJECTIVES: The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. METHODS: Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. RESULTS: Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. CONCLUSION: Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.
BACKGROUND: The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). OBJECTIVES: The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. METHODS: Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. RESULTS: Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. CONCLUSION: Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.
Occupational Health Surveillance: Pulmonary Function Test in Proppant Exposures
Rahman et al., May 2016
Occupational Health Surveillance: Pulmonary Function Test in Proppant Exposures
Humairat H. Rahman, Giffe T. Johnson, Raymond D. Harbison (2016). Occupational Diseases and Environmental Medicine, 37-45. 10.4236/odem.2016.42005
Abstract:
Workers involved in hydraulic fracking processes are exposed to various types of chemicals and dusts in their workplaces, such as proppants, which hold open the fissures created in the fracking process. Recently, ceramic proppants have been developed that may be less hazardous to workers than traditional proppants. Pulmonary function testing of workers producing ceramic proppant was used to assess the potential inhalation hazards of ceramic proppant. 100 male workers from a producer of ceramic proppant were evaluated with pulmonary function test data collected and evaluated using The American Thoracic Society (ATS) acceptability criteria. A comparison group was selected from the Third National Health and Nutrition Examination Survey (NHANES III) spi- rometry laboratory subset. No pulmonary function deficits were found in the worker group in comparison to the NHANES III population. Mean FEV1 and FVC values in workers were 3.8 and 4.8 liters respectively, and were greater as compared to the NHANES III population of similar demo- graphics. An FEV1/FVC ratio of less than 0.8, when compared to the NHANES III group, produced an odds ratio of 0.44 in worker group, indicating less risk of preclinical pulmonary dysfunction. Overall, exposure to ceramic proppant was not found to produce an adverse impact on pulmonary function in workers engaged in the manufacture of ceramic proppant.
Workers involved in hydraulic fracking processes are exposed to various types of chemicals and dusts in their workplaces, such as proppants, which hold open the fissures created in the fracking process. Recently, ceramic proppants have been developed that may be less hazardous to workers than traditional proppants. Pulmonary function testing of workers producing ceramic proppant was used to assess the potential inhalation hazards of ceramic proppant. 100 male workers from a producer of ceramic proppant were evaluated with pulmonary function test data collected and evaluated using The American Thoracic Society (ATS) acceptability criteria. A comparison group was selected from the Third National Health and Nutrition Examination Survey (NHANES III) spi- rometry laboratory subset. No pulmonary function deficits were found in the worker group in comparison to the NHANES III population. Mean FEV1 and FVC values in workers were 3.8 and 4.8 liters respectively, and were greater as compared to the NHANES III population of similar demo- graphics. An FEV1/FVC ratio of less than 0.8, when compared to the NHANES III group, produced an odds ratio of 0.44 in worker group, indicating less risk of preclinical pulmonary dysfunction. Overall, exposure to ceramic proppant was not found to produce an adverse impact on pulmonary function in workers engaged in the manufacture of ceramic proppant.
Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions
Rich et al., March 2016
Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions
Alisa L. Rich, Jay T. Patel, Samiah S. Al-Angari (2016). Environmental Health Insights, 51-57. 10.4137/EHI.S31906
Abstract:
Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.
Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.
Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes
Mitchell et al., February 2016
Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes
Austin L. Mitchell, W. Michael Griffin, Elizabeth A. Casman (2016). Risk Analysis: An Official Publication of the Society for Risk Analysis, . 10.1111/risa.12570
Abstract:
The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m(3) (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m(3) (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m(3) (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10(-4) (interval spanning 95% of simulation results: 8.5×10(-5) , 3.4×10(-4) ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10(-3) . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.
The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m(3) (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m(3) (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m(3) (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10(-4) (interval spanning 95% of simulation results: 8.5×10(-5) , 3.4×10(-4) ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10(-3) . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.
Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health
Olaguer et al., February 2016
Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health
Eduardo P. Olaguer, Matthew Erickson, Asanga Wijesinghe, Brad Neish, Jeff Williams, John Colvin (2016). Journal of the Air & Waste Management Association, 173-183. 10.1080/10962247.2015.1083914
Abstract:
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions.Implications: Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions.Implications: Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.
Residue concerns following exposure of livestock to oil and petroleum products
DeDonder et al., January 2016
Residue concerns following exposure of livestock to oil and petroleum products
Keith D. DeDonder, Ronette Gehring, Jim E. Riviere, Ronald E. Baynes, Lisa A. Tell, Thomas W. Vickroy (2016). Journal of the American Veterinary Medical Association, 145-146. 10.1080/10962247.2015.1083914
Abstract:
Hazard Ranking Methodology for Assessing Health Impacts of Unconventional Natural Gas Development and Production: The Maryland Case Study
Boyle et al., January 2016
Hazard Ranking Methodology for Assessing Health Impacts of Unconventional Natural Gas Development and Production: The Maryland Case Study
Meleah D. Boyle, Devon C. Payne-Sturges, Thurka Sangaramoorthy, Sacoby Wilson, Keeve E. Nachman, Kelsey Babik, Christian C. Jenkins, Joshua Trowell, Donald K. Milton, Amir Sapkota (2016). PLoS ONE, e0145368. 10.1371/journal.pone.0145368
Abstract:
The recent growth of unconventional natural gas development and production (UNGDP) has outpaced research on the potential health impacts associated with the process. The Maryland Marcellus Shale Public Health Study was conducted to inform the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, State legislators and the Governor about potential public health impacts associated with UNGDP so they could make an informed decision that considers the health and well-being of Marylanders. In this paper, we describe an impact assessment and hazard ranking methodology we used to assess the potential public health impacts for eight hazards associated with the UNGDP process. The hazard ranking included seven metrics: 1) presence of vulnerable populations (e.g. children under the age of 5, individuals over the age of 65, surface owners), 2) duration of exposure, 3) frequency of exposure, 4) likelihood of health effects, 5) magnitude/severity of health effects, 6) geographic extent, and 7) effectiveness of setbacks. Overall public health concern was determined by a color-coded ranking system (low, moderately high, and high) that was generated based on the overall sum of the scores for each hazard. We provide three illustrative examples of applying our methodology for air quality and health care infrastructure which were ranked as high concern and for water quality which was ranked moderately high concern. The hazard ranking was a valuable tool that allowed us to systematically evaluate each of the hazards and provide recommendations to minimize the hazards.
The recent growth of unconventional natural gas development and production (UNGDP) has outpaced research on the potential health impacts associated with the process. The Maryland Marcellus Shale Public Health Study was conducted to inform the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, State legislators and the Governor about potential public health impacts associated with UNGDP so they could make an informed decision that considers the health and well-being of Marylanders. In this paper, we describe an impact assessment and hazard ranking methodology we used to assess the potential public health impacts for eight hazards associated with the UNGDP process. The hazard ranking included seven metrics: 1) presence of vulnerable populations (e.g. children under the age of 5, individuals over the age of 65, surface owners), 2) duration of exposure, 3) frequency of exposure, 4) likelihood of health effects, 5) magnitude/severity of health effects, 6) geographic extent, and 7) effectiveness of setbacks. Overall public health concern was determined by a color-coded ranking system (low, moderately high, and high) that was generated based on the overall sum of the scores for each hazard. We provide three illustrative examples of applying our methodology for air quality and health care infrastructure which were ranked as high concern and for water quality which was ranked moderately high concern. The hazard ranking was a valuable tool that allowed us to systematically evaluate each of the hazards and provide recommendations to minimize the hazards.
PM2.5 Airborne Particulates Near Frac Sand Operations
Walters et al., November 2015
PM2.5 Airborne Particulates Near Frac Sand Operations
Kristin Walters, Jeron Jacobson, Zachary Kroening, Crispin Pierce (2015). Journal of Environmental Health, 8-12. 10.1371/journal.pone.0145368
Abstract:
The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 mu g/m(3) in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 mu g/m(3) is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.
The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 mu g/m(3) in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 mu g/m(3) is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.
The Barnett Shale: From problem formulation to risk management
Ethridge et al., September 2015
The Barnett Shale: From problem formulation to risk management
Shannon Ethridge, Tiffany Bredfeldt, Keith Sheedy, Stephanie Shirley, Glendora Lopez, Michael Honeycutt (2015). Journal of Unconventional Oil and Gas Resources, 95-110. 10.1016/j.juogr.2015.06.001
Abstract:
There is a nationwide trend to develop shale formations due to advances in horizontal drilling and hydraulic fracturing technology. The Barnett Shale in north Texas is one of the largest onshore natural gas fields in the US, and has experienced exponential growth since the 1990’s. This immense amount of well development and gas production has occurred near heavily populated, urban areas, leading to increased public concern regarding the impacts of these activities on human health and welfare. The Texas Commission on Environmental Quality (TCEQ) is charged with regulating sources of air emissions from natural gas operations (NGOs) and is in a unique position to evaluate any associated risks. The goal of this manuscript is to describe the problem formulation process used by the TCEQ to characterize risks associated with air emissions from NGOs, and the subsequent risk management strategies implemented. Details on how potential sources of risk to human health were identified and quantified are provided. Initial assessments identified volatile organic compounds (VOCs) as chemicals of concern. Over 4.7 million data points for VOCs were used in this assessment on both a short-term and long-term basis. Only one short-term sample measured VOCs levels above short-term health concern. Several short-term samples measured VOCs above odor-based values. None of the VOCs were measured above levels of long-term health concern. We describe efforts to engage stakeholders early in the risk assessment process and outreach programs used. Finally, details on new rules and regulations that are being used to more efficiently manage risks are provided. Given the resources and experience TCEQ possesses to evaluate environmental impacts that may be caused by shale gas development and production, it is our hope that this manuscript may serve as a resource to others to identify and manage risks associated with oil and gas activities in their area.
There is a nationwide trend to develop shale formations due to advances in horizontal drilling and hydraulic fracturing technology. The Barnett Shale in north Texas is one of the largest onshore natural gas fields in the US, and has experienced exponential growth since the 1990’s. This immense amount of well development and gas production has occurred near heavily populated, urban areas, leading to increased public concern regarding the impacts of these activities on human health and welfare. The Texas Commission on Environmental Quality (TCEQ) is charged with regulating sources of air emissions from natural gas operations (NGOs) and is in a unique position to evaluate any associated risks. The goal of this manuscript is to describe the problem formulation process used by the TCEQ to characterize risks associated with air emissions from NGOs, and the subsequent risk management strategies implemented. Details on how potential sources of risk to human health were identified and quantified are provided. Initial assessments identified volatile organic compounds (VOCs) as chemicals of concern. Over 4.7 million data points for VOCs were used in this assessment on both a short-term and long-term basis. Only one short-term sample measured VOCs levels above short-term health concern. Several short-term samples measured VOCs above odor-based values. None of the VOCs were measured above levels of long-term health concern. We describe efforts to engage stakeholders early in the risk assessment process and outreach programs used. Finally, details on new rules and regulations that are being used to more efficiently manage risks are provided. Given the resources and experience TCEQ possesses to evaluate environmental impacts that may be caused by shale gas development and production, it is our hope that this manuscript may serve as a resource to others to identify and manage risks associated with oil and gas activities in their area.
Fate of Radium in Marcellus Shale flowback water impoundments and assessment of associated health risks
Zhang et al., July 2015
Fate of Radium in Marcellus Shale flowback water impoundments and assessment of associated health risks
Tieyuan Zhang, Richard Warren Hammack, Radisav D. Vidic (2015). Environmental Science & Technology, . 10.1021/acs.est.5b01393
Abstract:
Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and Naturally Occurring Radioactive Material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge) where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.
Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and Naturally Occurring Radioactive Material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge) where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.
Air Contaminants Associated with Potential Respiratory Effects from Unconventional Resource Development Activities
Michael McCawley, June 2015
Air Contaminants Associated with Potential Respiratory Effects from Unconventional Resource Development Activities
Michael McCawley (2015). Seminars in Respiratory and Critical Care Medicine, 379-387. 10.1055/s-0035-1549453
Abstract:
Unconventional natural gas development uses horizontal drilling in conjunction with hydraulic fracturing to gain access to natural gas deposits which may be tightly held in shale deposits and unavailable to conventional vertical drilling operations. The intensive work required to extract this source of energy results in higher than usual numbers of vehicles involved, potential release of emissions from those vehicles in congested zones surrounding the drill site, and release of other contaminants from materials drawn back out of the borehole after fracturing of the shale. Typical contaminants would be diesel exhaust particulate and gases, volatile organic compounds and other hydrocarbons both from diesels and the drilling process, crystalline silica, used as part of the hydraulic fracturing process in kiloton quantities, and methane escaping from the borehole and piping. A rise in respiratory disease with proximity to the process has been reported in nearby communities and both silica and diesel exposures at the worksite are recognized respiratory hazards. Because of the relatively short time this process has been used to the extent it is currently being used, it is not possible to draw detailed conclusions about the respiratory hazards that may be posed. However, based on the traffic volume associated with each drill site and the number of drill sites in any locale, it is possible at least to compare the effects to that of large traffic volume highways which are known to produce some respiratory effects in surrounding areas.
Unconventional natural gas development uses horizontal drilling in conjunction with hydraulic fracturing to gain access to natural gas deposits which may be tightly held in shale deposits and unavailable to conventional vertical drilling operations. The intensive work required to extract this source of energy results in higher than usual numbers of vehicles involved, potential release of emissions from those vehicles in congested zones surrounding the drill site, and release of other contaminants from materials drawn back out of the borehole after fracturing of the shale. Typical contaminants would be diesel exhaust particulate and gases, volatile organic compounds and other hydrocarbons both from diesels and the drilling process, crystalline silica, used as part of the hydraulic fracturing process in kiloton quantities, and methane escaping from the borehole and piping. A rise in respiratory disease with proximity to the process has been reported in nearby communities and both silica and diesel exposures at the worksite are recognized respiratory hazards. Because of the relatively short time this process has been used to the extent it is currently being used, it is not possible to draw detailed conclusions about the respiratory hazards that may be posed. However, based on the traffic volume associated with each drill site and the number of drill sites in any locale, it is possible at least to compare the effects to that of large traffic volume highways which are known to produce some respiratory effects in surrounding areas.
Spatial distribution of unconventional gas wells and human populations in the Marcellus Shale in the United States: Vulnerability analysis
Yelena Ogneva-Himmelberger and Liyao Huang, June 2015
Spatial distribution of unconventional gas wells and human populations in the Marcellus Shale in the United States: Vulnerability analysis
Yelena Ogneva-Himmelberger and Liyao Huang (2015). Applied Geography, 165-174. 10.1016/j.apgeog.2015.03.011
Abstract:
Modern forms of drilling and extraction have recently led to a boom in oil and gas production in the U.S. and stimulated a controversy around its economic benefits and environmental and human health impacts. Using an environmental justice paradigm this study applies Geographic Information Systems (GIS) and spatial analysis to determine whether certain vulnerable human populations are unequally exposed to pollution from unconventional gas wells in Pennsylvania, West Virginia, and Ohio. Several GIS-based approaches were used to identify exposed areas, and a t-test was used to find statistically significant differences between rural populations living close to wells and rural populations living farther away. Sociodemographic indicators include age (children and the elderly), poverty level, education level, and race at the census tract level. Local Indicators of Spatial Autocorrelation (LISA) technique was applied to find spatial clusters where both high well density and high proportions of vulnerable populations occur. The results demonstrate that the environmental injustice occurs in areas with unconventional wells in Pennsylvania with respect to the poor population. There are also localized clusters of vulnerable populations in exposed areas in all three states: Pennsylvania (for poverty and elderly population), West Virginia (for poverty, elderly population, and education level) and Ohio (for children).
Modern forms of drilling and extraction have recently led to a boom in oil and gas production in the U.S. and stimulated a controversy around its economic benefits and environmental and human health impacts. Using an environmental justice paradigm this study applies Geographic Information Systems (GIS) and spatial analysis to determine whether certain vulnerable human populations are unequally exposed to pollution from unconventional gas wells in Pennsylvania, West Virginia, and Ohio. Several GIS-based approaches were used to identify exposed areas, and a t-test was used to find statistically significant differences between rural populations living close to wells and rural populations living farther away. Sociodemographic indicators include age (children and the elderly), poverty level, education level, and race at the census tract level. Local Indicators of Spatial Autocorrelation (LISA) technique was applied to find spatial clusters where both high well density and high proportions of vulnerable populations occur. The results demonstrate that the environmental injustice occurs in areas with unconventional wells in Pennsylvania with respect to the poor population. There are also localized clusters of vulnerable populations in exposed areas in all three states: Pennsylvania (for poverty and elderly population), West Virginia (for poverty, elderly population, and education level) and Ohio (for children).