This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 23, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Methane Emissions from Conventional and Unconventional Natural Gas Production Sites in the Marcellus Shale Basin
Omara et al., February 2016
Methane Emissions from Conventional and Unconventional Natural Gas Production Sites in the Marcellus Shale Basin
Mark Omara, Melissa R. Sullivan, Xiang Li, R. Subramanian, Allen L. Robinson, Albert A. Presto (2016). Environmental Science & Technology, 2099-2107. 10.1021/acs.est.5b05503
Abstract:
There is a need for continued assessment of methane (CH4) emissions associated with natural gas (NG) production, especially as recent advancements in horizontal drilling combined with staged hydraulic fracturing technologies have dramatically increased NG production (we refer to these wells as ?unconventional? NG wells). In this study, we measured facility-level CH4 emissions rates from the NG production sector in the Marcellus region, and compared CH4 emissions between unconventional NG (UNG) well pad sites and the relatively smaller and older ?conventional? NG (CvNG) sites that consist of wells drilled vertically into permeable geologic formations. A top-down tracer-flux CH4 measurement approach utilizing mobile downwind intercepts of CH4, ethane, and tracer (nitrous oxide and acetylene) plumes was performed at 18 CvNG sites (19 individual wells) and 17 UNG sites (88 individual wells). The 17 UNG sites included four sites undergoing completion flowback (FB). The mean facility-level CH4 emission rate among UNG well pad sites in routine production (18.8 kg/h (95% confidence interval (CI) on the mean of 12.0?26.8 kg/h)) was 23 times greater than the mean CH4 emissions from CvNG sites. These differences were attributed, in part, to the large size (based on number of wells and ancillary NG production equipment) and the significantly higher production rate of UNG sites. However, CvNG sites generally had much higher production-normalized CH4 emission rates (median: 11%; range: 0.35?91%) compared to UNG sites (median: 0.13%, range: 0.01?1.2%), likely resulting from a greater prevalence of avoidable process operating conditions (e.g., unresolved equipment maintenance issues). At the regional scale, we estimate that total annual CH4 emissions from 88?500 combined CvNG well pads in Pennsylvania and West Virginia (660 Gg (95% CI: 500 to 800 Gg)) exceeded that from 3390 UNG well pads by 170 Gg, reflecting the large number of CvNG wells and the comparably large fraction of CH4 lost per unit production. The new emissions data suggest that the recently instituted Pennsylvania CH4 emissions inventory substantially underestimates measured facility-level CH4 emissions by >10?40 times for five UNG sites in this study.
There is a need for continued assessment of methane (CH4) emissions associated with natural gas (NG) production, especially as recent advancements in horizontal drilling combined with staged hydraulic fracturing technologies have dramatically increased NG production (we refer to these wells as ?unconventional? NG wells). In this study, we measured facility-level CH4 emissions rates from the NG production sector in the Marcellus region, and compared CH4 emissions between unconventional NG (UNG) well pad sites and the relatively smaller and older ?conventional? NG (CvNG) sites that consist of wells drilled vertically into permeable geologic formations. A top-down tracer-flux CH4 measurement approach utilizing mobile downwind intercepts of CH4, ethane, and tracer (nitrous oxide and acetylene) plumes was performed at 18 CvNG sites (19 individual wells) and 17 UNG sites (88 individual wells). The 17 UNG sites included four sites undergoing completion flowback (FB). The mean facility-level CH4 emission rate among UNG well pad sites in routine production (18.8 kg/h (95% confidence interval (CI) on the mean of 12.0?26.8 kg/h)) was 23 times greater than the mean CH4 emissions from CvNG sites. These differences were attributed, in part, to the large size (based on number of wells and ancillary NG production equipment) and the significantly higher production rate of UNG sites. However, CvNG sites generally had much higher production-normalized CH4 emission rates (median: 11%; range: 0.35?91%) compared to UNG sites (median: 0.13%, range: 0.01?1.2%), likely resulting from a greater prevalence of avoidable process operating conditions (e.g., unresolved equipment maintenance issues). At the regional scale, we estimate that total annual CH4 emissions from 88?500 combined CvNG well pads in Pennsylvania and West Virginia (660 Gg (95% CI: 500 to 800 Gg)) exceeded that from 3390 UNG well pads by 170 Gg, reflecting the large number of CvNG wells and the comparably large fraction of CH4 lost per unit production. The new emissions data suggest that the recently instituted Pennsylvania CH4 emissions inventory substantially underestimates measured facility-level CH4 emissions by >10?40 times for five UNG sites in this study.
Reconciling divergent estimates of oil and gas methane emissions
Zavala-Araiza et al., December 2015
Reconciling divergent estimates of oil and gas methane emissions
Daniel Zavala-Araiza, David R. Lyon, Ramón A. Alvarez, Kenneth J. Davis, Robert Harriss, Scott C. Herndon, Anna Karion, Eric Adam Kort, Brian K. Lamb, Xin Lan, Anthony J. Marchese, Stephen W. Pacala, Allen L. Robinson, Paul B. Shepson, Colm Sweeney, Robert Talbot, Amy Townsend-Small, Tara I. Yacovitch, Daniel J. Zimmerle, Steven P. Hamburg (2015). Proceedings of the National Academy of Sciences, 15597-15602. 10.1073/pnas.1522126112
Abstract:
Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.
Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.
Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations
Adam R. Brandt, November 2015
Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations
Adam R. Brandt (2015). Environmental Science & Technology, 13059-13066. 10.1021/acs.est.5b03540
Abstract:
Environmental impacts embodied in oilfield capital equipment have not been thoroughly studied. In this paper, we present the first open-source model which computes the embodied energy and greenhouse gas (GHG) emissions associated with materials consumed in constructing oil and gas wells and associated infrastructure. The model includes well casing, wellbore cement, drilling mud, processing equipment, gas compression, and transport infrastructure. Default case results show that consumption of materials in constructing oilfield equipment consumes ∼0.014 MJ of primary energy per MJ of oil produced, and results in ∼1.3 gCO2-eq GHG emissions per MJ (lower heating value) of crude oil produced, an increase of 15% relative to upstream emissions assessed in earlier OPGEE model versions, and an increase of 1–1.5% of full life cycle emissions. A case study of a hydraulically fractured well in the Bakken formation of North Dakota suggests lower energy intensity (0.011 MJ/MJ) and emissions intensity (1.03 gCO2-eq/MJ) due to the high productivity of hydraulically fractured wells. Results are sensitive to per-well productivity, the complexity of wellbore casing design, and the energy and emissions intensity per kg of material consumed.
Environmental impacts embodied in oilfield capital equipment have not been thoroughly studied. In this paper, we present the first open-source model which computes the embodied energy and greenhouse gas (GHG) emissions associated with materials consumed in constructing oil and gas wells and associated infrastructure. The model includes well casing, wellbore cement, drilling mud, processing equipment, gas compression, and transport infrastructure. Default case results show that consumption of materials in constructing oilfield equipment consumes ∼0.014 MJ of primary energy per MJ of oil produced, and results in ∼1.3 gCO2-eq GHG emissions per MJ (lower heating value) of crude oil produced, an increase of 15% relative to upstream emissions assessed in earlier OPGEE model versions, and an increase of 1–1.5% of full life cycle emissions. A case study of a hydraulically fractured well in the Bakken formation of North Dakota suggests lower energy intensity (0.011 MJ/MJ) and emissions intensity (1.03 gCO2-eq/MJ) due to the high productivity of hydraulically fractured wells. Results are sensitive to per-well productivity, the complexity of wellbore casing design, and the energy and emissions intensity per kg of material consumed.
Understanding variability to reduce the energy and GHG footprints of U.S. ethylene production
Yao et al., November 2015
Understanding variability to reduce the energy and GHG footprints of U.S. ethylene production
Yuan Yao, Diane J. Graziano, Matthew Riddle, Joe Cresko, Eric Masanet (2015). Environmental Science & Technology, 14704-14716. 10.1021/acs.est.5b03851
Abstract:
Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry?s energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. Based on these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry?s footprints moving forward.
Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry?s energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. Based on these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry?s footprints moving forward.
Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety
Gallagher et al., September 2015
Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety
Morgan E. Gallagher, Adrian Down, Robert C. Ackley, Kaiguang Zhao, Nathan Phillips, Robert B. Jackson (2015). Environmental Science & Technology Letters, 286-291. 10.1021/acs.estlett.5b00213
Abstract:
From production through distribution, oil and gas infrastructure provides the largest source of anthropogenic methane in the United States and the second largest globally. Using a Picarro G2132i Cavity Ring-Down spectrometer, we mapped natural gas leaks across the streets of three United States cities?Durham, NC, Cincinnati, OH, and Manhattan, NY?at different stages of pipeline replacement of cast iron and other older materials. We identified 132, 351, and 1050 leaks in Durham, Cincinnati, and Manhattan, respectively, across 595, 750, and 247 road miles driven. Leak densities were an order of magnitude lower for Durham and Cincinnati (0.22 and 0.47 leaks/mi, respectively) than for Manhattan (4.25 leaks/mi) and two previously mapped cities, Boston (4.28 leaks/mi) and Washington, DC (3.93 leaks/mi). Cities with successful pipeline replacement programs have 90% fewer leaks per mile than cities without such programs. Similar programs around the world should provide additional environmental, economic, and consumer safety benefits.
From production through distribution, oil and gas infrastructure provides the largest source of anthropogenic methane in the United States and the second largest globally. Using a Picarro G2132i Cavity Ring-Down spectrometer, we mapped natural gas leaks across the streets of three United States cities?Durham, NC, Cincinnati, OH, and Manhattan, NY?at different stages of pipeline replacement of cast iron and other older materials. We identified 132, 351, and 1050 leaks in Durham, Cincinnati, and Manhattan, respectively, across 595, 750, and 247 road miles driven. Leak densities were an order of magnitude lower for Durham and Cincinnati (0.22 and 0.47 leaks/mi, respectively) than for Manhattan (4.25 leaks/mi) and two previously mapped cities, Boston (4.28 leaks/mi) and Washington, DC (3.93 leaks/mi). Cities with successful pipeline replacement programs have 90% fewer leaks per mile than cities without such programs. Similar programs around the world should provide additional environmental, economic, and consumer safety benefits.
Methane Emissions from United States Natural Gas Gathering and Processing
Marchese et al., August 2015
Methane Emissions from United States Natural Gas Gathering and Processing
Anthony J. Marchese, Timothy L. Vaughn, Daniel J. Zimmerle, David M. Martinez, Laurie L. Williams, Allen L. Robinson, Austin L. Mitchell, R. Subramanian, Daniel S. Tkacik, Joseph R. Roscioli, Scott C. Herndon (2015). Environmental Science & Technology, 10718-10727. 10.1021/acs.est.5b02275
Abstract:
New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/?237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/?185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.
New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/?237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/?185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.
Effect of methane leakage on the greenhouse gas footprint of electricity generation
Nicolas Sanchez and David C. Mays, July 2015
Effect of methane leakage on the greenhouse gas footprint of electricity generation
Nicolas Sanchez and David C. Mays (2015). Climatic Change, 169-178. 10.1007/s10584-015-1471-6
Abstract:
For the purpose of generating electricity, what leakage rate renders the greenhouse gas (GHG) footprint of natural gas equivalent to that of coal? This paper answers this question using a simple model, which assumes that the comprehensive GHG footprint is the sum of the carbon dioxide-equivalent emissions resulting from (1) electricity generation and (2) natural gas leakage. The emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs), whereas the emissions from natural gas leakage are estimated assuming that natural gas is 80 % methane, whose global warming potential (GWP) is calculated using equations provided by the Intergovernmental Panel on Climate Change (IPCC). Results, presented on a straightforward plot of GHG footprint versus time horizon, show that natural gas leakage of 2.0 % or 4.8 % eliminates half of natural gas’s GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9 % or 9.1 % completely eliminates the GHG footprint advantage at 20- and 100-year time horizons, respectively. A two-parameter power law approximation of the IPCC’s equation for GWP is utilized and gives equivalent results. Results indicate that leakage control is essential for natural gas to deliver a smaller GHG footprint than coal.
For the purpose of generating electricity, what leakage rate renders the greenhouse gas (GHG) footprint of natural gas equivalent to that of coal? This paper answers this question using a simple model, which assumes that the comprehensive GHG footprint is the sum of the carbon dioxide-equivalent emissions resulting from (1) electricity generation and (2) natural gas leakage. The emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs), whereas the emissions from natural gas leakage are estimated assuming that natural gas is 80 % methane, whose global warming potential (GWP) is calculated using equations provided by the Intergovernmental Panel on Climate Change (IPCC). Results, presented on a straightforward plot of GHG footprint versus time horizon, show that natural gas leakage of 2.0 % or 4.8 % eliminates half of natural gas’s GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9 % or 9.1 % completely eliminates the GHG footprint advantage at 20- and 100-year time horizons, respectively. A two-parameter power law approximation of the IPCC’s equation for GWP is utilized and gives equivalent results. Results indicate that leakage control is essential for natural gas to deliver a smaller GHG footprint than coal.
Methane Emissions from the Natural Gas Transmission and Storage System in the United States
Zimmerle et al., July 2015
Methane Emissions from the Natural Gas Transmission and Storage System in the United States
Daniel J. Zimmerle, Laurie L. Williams, Timothy L. Vaughn, Casey Quinn, R. Subramanian, Gerald P. Duggan, Bryan Willson, Jean D. Opsomer, Anthony J. Marchese, David M. Martinez, Allen L. Robinson (2015). Environmental Science & Technology, 9374-9383. 10.1021/acs.est.5b01669
Abstract:
The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and ?super-emitter? facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency?s Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA?s Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.
The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and ?super-emitter? facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency?s Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA?s Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.
Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions
Experience I. Nduagu and Ian D. Gates, July 2015
Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions
Experience I. Nduagu and Ian D. Gates (2015). Environmental Science & Technology, 8824-8832. 10.1021/acs.est.5b01913
Abstract:
Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4?21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.
Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4?21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.
Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin
Lavoie et al., July 2015
Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin
Tegan N. Lavoie, Paul B. Shepson, Maria O. L. Cambaliza, Brian H. Stirm, Anna Karion, Colm Sweeney, Tara I. Yacovitch, Scott C. Herndon, Xin Lan, David Lyon (2015). Environmental Science & Technology, 7904-7913. 10.1021/acs.est.5b00410
Abstract:
We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2?5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr?1, roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2?4.6 times larger than emissions based on the national study. Results from this study were used to represent ?super-emitters? in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of ?super-emitters? that may be missed by random sampling of a subset of the total.
We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2?5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr?1, roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2?4.6 times larger than emissions based on the national study. Results from this study were used to represent ?super-emitters? in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of ?super-emitters? that may be missed by random sampling of a subset of the total.
Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities
Johnson et al., July 2015
Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities
Derek R. Johnson, April N. Covington, Nigel N. Clark (2015). Environmental Science & Technology, 8132-8138. 10.1021/es506163m
Abstract:
As part of the Environmental Defense Fund?s Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.
As part of the Environmental Defense Fund?s Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.
Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region
Lyon et al., July 2015
Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region
David R. Lyon, Daniel Zavala-Araiza, Ramón A. Alvarez, Robert Harriss, Virginia Palacios, Xin Lan, Robert Talbot, Tegan Lavoie, Paul Shepson, Tara I. Yacovitch, Scott C. Herndon, Anthony J. Marchese, Daniel Zimmerle, Allen L. Robinson, Steven P. Hamburg (2015). Environmental Science & Technology, 8147-8157. 10.1021/es506359c
Abstract:
Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400?82,400) kg CH4 h?1. O&G emissions were estimated to be 46,200 (40,000?54,100) kg CH4 h?1 with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory?s higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.
Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400?82,400) kg CH4 h?1. O&G emissions were estimated to be 46,200 (40,000?54,100) kg CH4 h?1 with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory?s higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.
Characterizing Fugitive Methane Emissions in the Barnett Shale Area Using a Mobile Laboratory
Lan et al., July 2015
Characterizing Fugitive Methane Emissions in the Barnett Shale Area Using a Mobile Laboratory
Xin Lan, Robert Talbot, Patrick Laine, Azucena Torres (2015). Environmental Science & Technology, 8139-8146. 10.1021/es5063055
Abstract:
Atmospheric methane (CH4) was measured using a mobile laboratory to quantify fugitive CH4 emissions from Oil and Natural Gas (ONG) operations in the Barnett Shale area. During this Barnett Coordinated Campaign we sampled more than 152 facilities, including well pads, compressor stations, gas processing plants, and landfills. Emission rates from several ONG facilities and landfills were estimated using an Inverse Gaussian Dispersion Model and the Environmental Protection Agency (EPA) Model AERMOD. Model results show that well pads emissions rates had a fat-tailed distribution, with the emissions linearly correlated with gas production. Using this correlation, we estimated a total well pad emission rate of 1.5 ? 105 kg/h in the Barnett Shale area. It was found that CH4 emissions from compressor stations and gas processing plants were substantially higher, with some ?super emitters? having emission rates up to 3447 kg/h, more then 36,000-fold higher than reported by the Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program (GHGRP). Landfills are also a significant source of CH4 in the Barnett Shale area, and they should be accounted for in the regional budget of CH4.
Atmospheric methane (CH4) was measured using a mobile laboratory to quantify fugitive CH4 emissions from Oil and Natural Gas (ONG) operations in the Barnett Shale area. During this Barnett Coordinated Campaign we sampled more than 152 facilities, including well pads, compressor stations, gas processing plants, and landfills. Emission rates from several ONG facilities and landfills were estimated using an Inverse Gaussian Dispersion Model and the Environmental Protection Agency (EPA) Model AERMOD. Model results show that well pads emissions rates had a fat-tailed distribution, with the emissions linearly correlated with gas production. Using this correlation, we estimated a total well pad emission rate of 1.5 ? 105 kg/h in the Barnett Shale area. It was found that CH4 emissions from compressor stations and gas processing plants were substantially higher, with some ?super emitters? having emission rates up to 3447 kg/h, more then 36,000-fold higher than reported by the Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program (GHGRP). Landfills are also a significant source of CH4 in the Barnett Shale area, and they should be accounted for in the regional budget of CH4.
Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region
Townsend-Small et al., July 2015
Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region
Amy Townsend-Small, Josette E. Marrero, David R. Lyon, Isobel J. Simpson, Simone Meinardi, Donald R. Blake (2015). Environmental Science & Technology, 8175-8182. 10.1021/acs.est.5b00057
Abstract:
A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ13C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.
A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ13C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.
Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region
Karion et al., July 2015
Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region
Anna Karion, Colm Sweeney, Eric A. Kort, Paul B. Shepson, Alan Brewer, Maria Cambaliza, Stephen A. Conley, Ken Davis, Aijun Deng, Mike Hardesty, Scott C. Herndon, Thomas Lauvaux, Tegan Lavoie, David Lyon, Tim Newberger, Gabrielle Pétron, Chris Rella, Mackenzie Smith, Sonja Wolter, Tara I. Yacovitch, Pieter Tans (2015). Environmental Science & Technology, 8124-8131. 10.1021/acs.est.5b00217
Abstract:
We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 ? 103 kg hr?1 (equivalent to 0.66 ± 0.11 Tg CH4 yr?1; 95% confidence interval (CI)). We estimate that 60 ± 11 ? 103 kg CH4 hr?1 (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPA?s Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.
We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 ? 103 kg hr?1 (equivalent to 0.66 ± 0.11 Tg CH4 yr?1; 95% confidence interval (CI)). We estimate that 60 ± 11 ? 103 kg CH4 hr?1 (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPA?s Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.
Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites
Zavala-Araiza et al., July 2015
Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites
Daniel Zavala-Araiza, David Lyon, Ramón A. Alvarez, Virginia Palacios, Robert Harriss, Xin Lan, Robert Talbot, Steven P. Hamburg (2015). Environmental Science & Technology, 8167-8174. 10.1021/acs.est.5b00133
Abstract:
Emissions from natural gas production sites are characterized by skewed distributions, where a small percentage of sites?commonly labeled super-emitters?account for a majority of emissions. A better characterization of super-emitters is needed to operationalize ways to identify them and reduce emissions. We designed a conceptual framework that functionally defines superemitting sites as those with the highest proportional loss rates (methane emitted relative to methane produced). Using this concept, we estimated total methane emissions from natural gas production sites in the Barnett Shale; functionally superemitting sites accounted for roughly three-fourths of total emissions. We discuss the potential to reduce emissions from these sites, under the assumption that sites with high proportional loss rates have excess emissions resulting from abnormal or otherwise avoidable operating conditions, such as malfunctioning equipment. Because the population of functionally superemitting sites is not expected to be static over time, continuous monitoring will likely be necessary to identify them and improve their operation. This work suggests that achieving and maintaining uniformly low emissions across the entire population of production sites will require mitigation steps at a large fraction of sites.
Emissions from natural gas production sites are characterized by skewed distributions, where a small percentage of sites?commonly labeled super-emitters?account for a majority of emissions. A better characterization of super-emitters is needed to operationalize ways to identify them and reduce emissions. We designed a conceptual framework that functionally defines superemitting sites as those with the highest proportional loss rates (methane emitted relative to methane produced). Using this concept, we estimated total methane emissions from natural gas production sites in the Barnett Shale; functionally superemitting sites accounted for roughly three-fourths of total emissions. We discuss the potential to reduce emissions from these sites, under the assumption that sites with high proportional loss rates have excess emissions resulting from abnormal or otherwise avoidable operating conditions, such as malfunctioning equipment. Because the population of functionally superemitting sites is not expected to be static over time, continuous monitoring will likely be necessary to identify them and improve their operation. This work suggests that achieving and maintaining uniformly low emissions across the entire population of production sites will require mitigation steps at a large fraction of sites.
Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas
Harriss et al., July 2015
Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas
Robert Harriss, Ramón A. Alvarez, David Lyon, Daniel Zavala-Araiza, Drew Nelson, Steven P. Hamburg (2015). Environmental Science & Technology, 7524-7526. 10.1021/acs.est.5b02305
Abstract:
Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions
Yuan et al., June 2015
Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions
Bin Yuan, Lisa Kaser, Thomas Karl, Martin Graus, Jeff Peischl, Teresa L. Campos, Steve Shertz, Eric C. Apel, Rebecca S. Hornbrook, Alan Hills, Jessica B. Gilman, Brian M. Lerner, Carsten Warneke, Frank M. Flocke, Thomas B. Ryerson, Alex B. Guenther, Joost A. de Gouw (2015). Journal of Geophysical Research: Atmospheres, 2015JD023242. 10.1002/2015JD023242
Abstract:
Emissions of methane (CH4) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June–July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH4 and benzene from both C-130 flights with high-resolution data (10 Hz) and WP-3D flights with low-resolution data (1 Hz). Correlation (R = 0.65) between CH4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10 µg m−2 s−1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.
Emissions of methane (CH4) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June–July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH4 and benzene from both C-130 flights with high-resolution data (10 Hz) and WP-3D flights with low-resolution data (1 Hz). Correlation (R = 0.65) between CH4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10 µg m−2 s−1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.
Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China
Chang et al., June 2015
Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China
Yuan Chang, Runze Huang, Robert J. Ries, Eric Masanet (2015). Energy, 335-343. 10.1016/j.energy.2015.04.034
Abstract:
China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO2e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term.
China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO2e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term.
Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft
Nathan et al., May 2015
Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft
Brian J. Nathan, Levi M. Golston, Anthony S. O'Brien, Kevin Ross, William A. Harrison, Lei Tao, David J. Lary, Derek R. Johnson, April N. Covington, Nigel N. Clark, Mark A. Zondlo (2015). Environmental Science & Technology, 7896-7903. 10.1021/acs.est.5b00705
Abstract:
A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.
A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.
Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change
Alisa L. Rich and Jay T. Patel, May 2015
Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change
Alisa L. Rich and Jay T. Patel (2015). Environmental Health Insights, 35-39. 10.4137/EHI.S15667
Abstract:
Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.
Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.
Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods
Roscioli et al., May 2015
Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods
J. R. Roscioli, T. I. Yacovitch, C. Floerchinger, A. L. Mitchell, D. S. Tkacik, R. Subramanian, D. M. Martinez, T. L. Vaughn, L. Williams, D. Zimmerle, A. L. Robinson, S. C. Herndon, A. J. Marchese (2015). Atmos. Meas. Tech., 2017-2035. 10.5194/amt-8-2017-2015
Abstract:
Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.
Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.
Direct Measurements Show Decreasing Methane Emissions from Natural Gas Local Distribution Systems in the United States
Lamb et al., March 2015
Direct Measurements Show Decreasing Methane Emissions from Natural Gas Local Distribution Systems in the United States
Brian K. Lamb, Steven L. Edburg, Thomas W. Ferrara, Touché Howard, Matthew R. Harrison, Charles E. Kolb, Amy Townsend-Small, Wesley Dyck, Antonio Possolo, James R. Whetstone (2015). Environmental Science & Technology, 5161-5169. 10.1021/es505116p
Abstract:
Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.
Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.
Measuring Emissions from Oil and Natural Gas Well Pads Using the Mobile Flux Plane Technique
Rella et al., March 2015
Measuring Emissions from Oil and Natural Gas Well Pads Using the Mobile Flux Plane Technique
Chris W. Rella, Tracy R. Tsai, Connor G. Botkin, Eric R. Crosson, David Steele (2015). Environmental Science & Technology, 4742-4748. 10.1021/acs.est.5b00099
Abstract:
We present a study of methane emissions from oil and gas producing well pad facilities in the Barnett Shale region of Texas, measured using an innovative ground-based mobile flux plane (MFP) measurement system, as part of the Barnett Coordinated Campaign.1 Using only public roads, we measured the emissions from nearly 200 well pads over 2 weeks in October 2013. The population of measured well pads is split into well pads with detectable emissions (N = 115) and those with emissions below the detection limit of the MFP instrument (N = 67). For those well pads with nonzero emissions, the distribution was highly skewed, with a geometric mean of 0.63 kg/h, a geometric standard deviation of 4.2, and an arithmetic mean of 1.72 kg/h. Including the population of nonemitting well pads, we find that the arithmetic mean of the well pads sampled in this study is 1.1 kg/h. This distribution implies that 50% of the emissions is due to the 6.6% highest emitting well pads, and 80% of the emissions is from the 22% highest emitting well pads.
We present a study of methane emissions from oil and gas producing well pad facilities in the Barnett Shale region of Texas, measured using an innovative ground-based mobile flux plane (MFP) measurement system, as part of the Barnett Coordinated Campaign.1 Using only public roads, we measured the emissions from nearly 200 well pads over 2 weeks in October 2013. The population of measured well pads is split into well pads with detectable emissions (N = 115) and those with emissions below the detection limit of the MFP instrument (N = 67). For those well pads with nonzero emissions, the distribution was highly skewed, with a geometric mean of 0.63 kg/h, a geometric standard deviation of 4.2, and an arithmetic mean of 1.72 kg/h. Including the population of nonemitting well pads, we find that the arithmetic mean of the well pads sampled in this study is 1.1 kg/h. This distribution implies that 50% of the emissions is due to the 6.6% highest emitting well pads, and 80% of the emissions is from the 22% highest emitting well pads.
Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure
Howard et al., March 2015
Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure
Touché Howard, Thomas W. Ferrara, Amy Townsend-Small (2015). Journal of the Air & Waste Management Association, 856-862. 10.1080/10962247.2015.1025925
Abstract:
Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The United States Environmental Protection Agency (USEPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high flow sampler (or high volume sampler) is one of the tools approved for this by the USEPA. The Bacharach Hi-Flow® Sampler (BHFS) is the only commercially available high flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG ( 5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from 5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing as well as analysis of data from two other studies (Modrak et al., 2012; City of Ft Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: 1), calibration is more than 2 weeks old; 2), firmware is out of date; or 3), the composition of the NG source is less than 91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. ImplicationsAn instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with implications for greenhouse gas emissions estimates as well as safety.
Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The United States Environmental Protection Agency (USEPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high flow sampler (or high volume sampler) is one of the tools approved for this by the USEPA. The Bacharach Hi-Flow® Sampler (BHFS) is the only commercially available high flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG ( 5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from 5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing as well as analysis of data from two other studies (Modrak et al., 2012; City of Ft Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: 1), calibration is more than 2 weeks old; 2), firmware is out of date; or 3), the composition of the NG source is less than 91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. ImplicationsAn instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with implications for greenhouse gas emissions estimates as well as safety.
Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region
Yacovitch et al., March 2015
Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region
Tara I. Yacovitch, Scott C. Herndon, Gabrielle Pétron, Jonathan Kofler, David Lyon, Mark S. Zahniser, Charles E. Kolb (2015). Environmental Science & Technology, 7889-7895. 10.1021/es506352j
Abstract:
Results of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude. The distribution of emitters is peaked in the 0-5 kg/h range, with a significant tail. The ethane/methane molar enhancement ratio for this same distribution is investigated, showing a peak at ∼1.5% and a broad distribution between ∼4% and ∼17%. The regional distributions of source emissions and ethane/methane enhancement ratios are examined: the largest methane emissions appear between Fort Worth and Dallas, while the highest ethane/methane enhancement ratios occur for plumes observed in the northwestern potion of the region. Individual facilities, focusing on large emitters, are further analyzed by constraining the source location.
Results of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude. The distribution of emitters is peaked in the 0-5 kg/h range, with a significant tail. The ethane/methane molar enhancement ratio for this same distribution is investigated, showing a peak at ∼1.5% and a broad distribution between ∼4% and ∼17%. The regional distributions of source emissions and ethane/methane enhancement ratios are examined: the largest methane emissions appear between Fort Worth and Dallas, while the highest ethane/methane enhancement ratios occur for plumes observed in the northwestern potion of the region. Individual facilities, focusing on large emitters, are further analyzed by constraining the source location.
Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results
Mitchell et al., March 2015
Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results
Austin L. Mitchell, Daniel S. Tkacik, Joseph R. Roscioli, Scott C. Herndon, Tara I. Yacovitch, David M. Martinez, Timothy L. Vaughn, Laurie L. Williams, Melissa R. Sullivan, Cody Floerchinger, Mark Omara, R. Subramanian, Daniel Zimmerle, Anthony J. Marchese, Allen L. Robinson (2015). Environmental Science & Technology, 3219-3227. 10.1021/es5052809
Abstract:
Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting.
Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting.
Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol
Subramanian et al., March 2015
Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol
R. Subramanian, Laurie L. Williams, Timothy L. Vaughn, Daniel Zimmerle, Joseph R. Roscioli, Scott C. Herndon, Tara I. Yacovitch, Cody Floerchinger, Daniel S. Tkacik, Austin L. Mitchell, Melissa R. Sullivan, Timothy R. Dallmann, Allen L. Robinson (2015). Environmental Science & Technology, 3252-3261. 10.1021/es5060258
Abstract:
Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions. Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of their influence requires knowledge of the magnitude and frequency of superemitters across the entire T&S sector. Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and exhaust methane, and various exclusions. The bias is even larger if one accounts for the superemitters, which were not captured by the onsite measurements. The magnitude of the bias varied from site to site by site type and operating state. Therefore, while the GHGRP is a valuable new source of emissions information, care must be taken when incorporating these data into emission inventories. The value of the GHGRP can be increased by requiring more direct measurements of emissions (as opposed to using counts and emission factors), eliminating exclusions such as rod-packing vents on pressurized reciprocating compressors in standby mode under Subpart-W, and using more appropriate emission factors for exhaust methane from reciprocating engines under Subpart-C.
Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions. Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of their influence requires knowledge of the magnitude and frequency of superemitters across the entire T&S sector. Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and exhaust methane, and various exclusions. The bias is even larger if one accounts for the superemitters, which were not captured by the onsite measurements. The magnitude of the bias varied from site to site by site type and operating state. Therefore, while the GHGRP is a valuable new source of emissions information, care must be taken when incorporating these data into emission inventories. The value of the GHGRP can be increased by requiring more direct measurements of emissions (as opposed to using counts and emission factors), eliminating exclusions such as rod-packing vents on pressurized reciprocating compressors in standby mode under Subpart-W, and using more appropriate emission factors for exhaust methane from reciprocating engines under Subpart-C.
Allocating Methane Emissions to Natural Gas and Oil Production from Shale Formations
Zavala-Araiza et al., March 2015
Allocating Methane Emissions to Natural Gas and Oil Production from Shale Formations
Daniel Zavala-Araiza, David T. Allen, Matthew Harrison, Fiji C. George, Gilbert R. Jersey (2015). Acs Sustainable Chemistry & Engineering, 492-498. 10.1021/sc500730x
Abstract:
The natural gas supply chain includes production, processing, and transmission of natural gas, which originates from conventional, shale, coal bed, and other reservoirs. Because the hydrocarbon products and the emissions associated with extraction from different reservoir types can differ, when expressing methane emissions from the natural gas supply chain, it is important to allocate emissions to particular hydrocarbon products and reservoir types. In this work, life cycle allocation methods have been used to assign methane emissions from production wells operating in shale formations to oil, condensate, and gas products from the wells. The emission allocations are based on a data set of 489 gas wells in routine operation and 19 well completion events. The methane emissions allocated to natural gas production are approximately 85% of total emissions (mass based allocation), but there is regional variability in the data and therefore this work demonstrates the need to track natural gas sources by both formation type and production region. Methane emissions allocated to salable natural gas production from shale formations, based on this work, are a factor of 2 to 7 lower than those reported in commonly used life cycle data sets.
The natural gas supply chain includes production, processing, and transmission of natural gas, which originates from conventional, shale, coal bed, and other reservoirs. Because the hydrocarbon products and the emissions associated with extraction from different reservoir types can differ, when expressing methane emissions from the natural gas supply chain, it is important to allocate emissions to particular hydrocarbon products and reservoir types. In this work, life cycle allocation methods have been used to assign methane emissions from production wells operating in shale formations to oil, condensate, and gas products from the wells. The emission allocations are based on a data set of 489 gas wells in routine operation and 19 well completion events. The methane emissions allocated to natural gas production are approximately 85% of total emissions (mass based allocation), but there is regional variability in the data and therefore this work demonstrates the need to track natural gas sources by both formation type and production region. Methane emissions allocated to salable natural gas production from shale formations, based on this work, are a factor of 2 to 7 lower than those reported in commonly used life cycle data sets.
Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions
Peischl et al., February 2015
Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions
J. Peischl, T. B. Ryerson, K. C. Aikin, J. A. de Gouw, J. B. Gilman, J. S. Holloway, B. M. Lerner, R. Nadkarni, J. A. Neuman, J. B. Nowak, M. Trainer, C. Warneke, D. D. Parrish (2015). Journal of Geophysical Research: Atmospheres, 2119-2139. 10.1002/2014JD022697
Abstract:
We present measurements of methane (CH4) taken aboard a NOAA WP-3D research aircraft in 2013 over the Haynesville shale region in eastern Texas/northwestern Louisiana, the Fayetteville shale region in Arkansas, and the northeastern Pennsylvania portion of the Marcellus shale region, which accounted for the majority of Marcellus shale gas production that year. We calculate emission rates from the horizontal CH4 flux in the planetary boundary layer downwind of each region after subtracting the CH4 flux entering the region upwind. We find one-day CH4 emissions of (8.0 ± 2.7) × 107 g/hr from the Haynesville region, (3.9 ± 1.8) × 107 g/hr from the Fayetteville region, and (1.5 ± 0.6) × 107 g/hr from the Marcellus region in northeastern Pennsylvania. Finally, we compare the CH4 emissions to the total volume of natural gas extracted from each region to derive a loss rate from production operations of 1.0–2.1% from the Haynesville region, 1.0–2.8% from the Fayetteville region, and 0.18–0.41% from the Marcellus region in northeastern Pennsylvania. The climate impact of CH4 loss from shale gas production depends upon the total leakage from all production regions. The regions investigated in this work represented over half of the U.S. shale gas production in 2013, and we find generally lower loss rates than those reported in earlier studies of regions that made smaller contributions to total production. Hence, the national average CH4 loss rate from shale gas production may be lower than values extrapolated from the earlier studies.
We present measurements of methane (CH4) taken aboard a NOAA WP-3D research aircraft in 2013 over the Haynesville shale region in eastern Texas/northwestern Louisiana, the Fayetteville shale region in Arkansas, and the northeastern Pennsylvania portion of the Marcellus shale region, which accounted for the majority of Marcellus shale gas production that year. We calculate emission rates from the horizontal CH4 flux in the planetary boundary layer downwind of each region after subtracting the CH4 flux entering the region upwind. We find one-day CH4 emissions of (8.0 ± 2.7) × 107 g/hr from the Haynesville region, (3.9 ± 1.8) × 107 g/hr from the Fayetteville region, and (1.5 ± 0.6) × 107 g/hr from the Marcellus region in northeastern Pennsylvania. Finally, we compare the CH4 emissions to the total volume of natural gas extracted from each region to derive a loss rate from production operations of 1.0–2.1% from the Haynesville region, 1.0–2.8% from the Fayetteville region, and 0.18–0.41% from the Marcellus region in northeastern Pennsylvania. The climate impact of CH4 loss from shale gas production depends upon the total leakage from all production regions. The regions investigated in this work represented over half of the U.S. shale gas production in 2013, and we find generally lower loss rates than those reported in earlier studies of regions that made smaller contributions to total production. Hence, the national average CH4 loss rate from shale gas production may be lower than values extrapolated from the earlier studies.
Life Cycle Greenhouse Gas Emissions From U.S. Liquefied Natural Gas Exports: Implications for End Uses
Abrahams et al., February 2015
Life Cycle Greenhouse Gas Emissions From U.S. Liquefied Natural Gas Exports: Implications for End Uses
Leslie S Abrahams, Constantine Samaras, W. Michael Griffin, H. Scott Matthews (2015). Environmental Science & Technology, 3237-3245. 10.1021/es505617p
Abstract:
This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. Emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of pre-combustion life cycle emissions, hence shipping distance is not a major driver of GHGs. This study finds exported U.S. LNG has mean pre-combustion emissions of 37g CO2-equiv/MJ when regasified in Europe and Asia. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.027/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.
This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. Emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of pre-combustion life cycle emissions, hence shipping distance is not a major driver of GHGs. This study finds exported U.S. LNG has mean pre-combustion emissions of 37g CO2-equiv/MJ when regasified in Europe and Asia. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.027/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.
Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts
McKain et al., January 2015
Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts
Kathryn McKain, Adrian Down, Steve M. Raciti, John Budney, Lucy R. Hutyra, Cody Floerchinger, Scott C. Herndon, Thomas Nehrkorn, Mark S. Zahniser, Robert B. Jackson, Nathan Phillips, Steven C. Wofsy (2015). Proceedings of the National Academy of Sciences, 1941-1946. 10.1073/pnas.1416261112
Abstract:
Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.
Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.
Uncertainty in Regional-Average Petroleum GHG Intensities: Countering Information Gaps with Targeted Data Gathering
Brandt et al., January 2015
Uncertainty in Regional-Average Petroleum GHG Intensities: Countering Information Gaps with Targeted Data Gathering
Adam R. Brandt, Yuchi Sun, Kourosh Vafi (2015). Environmental Science & Technology, 679-686. 10.1021/es505376t
Abstract:
Recent efforts to model crude oil production GHG emissions are challenged by a lack of data. Missing data can affect the accuracy of oil field carbon intensity (CI) estimates as well as the production-weighted CI of groups (“baskets”) of crude oils. Here we use the OPGEE model to study the effect of incomplete information on the CI of crude baskets. We create two different 20 oil field baskets, one of which has typical emissions and one of which has elevated emissions. Dispersion of CI estimates is greatly reduced in baskets compared to single crudes (coefficient of variation = 0.2 for a typical basket when 50% of data is learned at random), and field-level inaccuracy (bias) is removed through compensating errors (bias of ∼5% in above case). If a basket has underlying characteristics significantly different than OPGEE defaults, systematic bias is introduced through use of defaults in place of missing data. Optimal data gathering strategies were found to focus on the largest 50% of fields, and on certain important parameters for each field. Users can avoid bias (reduced to <1 gCO2/MJ in our elevated emissions basket) through strategies that only require gathering ∼10–20% of input data.
Recent efforts to model crude oil production GHG emissions are challenged by a lack of data. Missing data can affect the accuracy of oil field carbon intensity (CI) estimates as well as the production-weighted CI of groups (“baskets”) of crude oils. Here we use the OPGEE model to study the effect of incomplete information on the CI of crude baskets. We create two different 20 oil field baskets, one of which has typical emissions and one of which has elevated emissions. Dispersion of CI estimates is greatly reduced in baskets compared to single crudes (coefficient of variation = 0.2 for a typical basket when 50% of data is learned at random), and field-level inaccuracy (bias) is removed through compensating errors (bias of ∼5% in above case). If a basket has underlying characteristics significantly different than OPGEE defaults, systematic bias is introduced through use of defaults in place of missing data. Optimal data gathering strategies were found to focus on the largest 50% of fields, and on certain important parameters for each field. Users can avoid bias (reduced to <1 gCO2/MJ in our elevated emissions basket) through strategies that only require gathering ∼10–20% of input data.
A review of water and greenhouse gas impacts of unconventional natural gas development in the United States
Arent et al., November 2024
A review of water and greenhouse gas impacts of unconventional natural gas development in the United States
Douglas Arent, Jeffrey Logan, Jordan Macknick, William Boyd, Kenneth III Medlock, Francis O'Sullivan, Jae Edmonds, Leon Clarke, Hillard Huntington, Garvin Heath, Patricia Statwick, Morgan Bazilian (2024). MRS Energy & Sustainability - A Review Journal, . 10.1557/mre.2015.5
Abstract:
ABSTRACT This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections. This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on environmental impacts. Specifically, we focus on water management and greenhouse gas emission implications. If unconventional natural gas in the United States is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future. The cutting-edge of industry water management practices gives a picture of how this transition is unfolding, although much opportunity remains to minimize water use and related environmental impacts. The role of natural gas to mitigate climate forcing is less clear. While natural gas has low CO2 emissions upon direct use, methane leakage and long term climate effects lead to the conclusion that increased use of natural gas as a substitute for more carbon intensive fuels will not substantially alter world carbon dioxide concentration projections, and that other zero or low carbon energy sources will be needed to limit GHG concentrations. We conclude with some possible avenues for further work.
ABSTRACT This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections. This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on environmental impacts. Specifically, we focus on water management and greenhouse gas emission implications. If unconventional natural gas in the United States is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future. The cutting-edge of industry water management practices gives a picture of how this transition is unfolding, although much opportunity remains to minimize water use and related environmental impacts. The role of natural gas to mitigate climate forcing is less clear. While natural gas has low CO2 emissions upon direct use, methane leakage and long term climate effects lead to the conclusion that increased use of natural gas as a substitute for more carbon intensive fuels will not substantially alter world carbon dioxide concentration projections, and that other zero or low carbon energy sources will be needed to limit GHG concentrations. We conclude with some possible avenues for further work.
Emission Factors for Hydraulically Fractured Gas Wells Derived Using Well- and Battery-level Reported Data for Alberta, Canada
David R. Tyner and Matthew R. Johnson, December 2014
Emission Factors for Hydraulically Fractured Gas Wells Derived Using Well- and Battery-level Reported Data for Alberta, Canada
David R. Tyner and Matthew R. Johnson (2014). Environmental Science & Technology, 14772-14781. 10.1021/es502815b
Abstract:
A comprehensive technical analysis of available industry-reported well activity and production data for Alberta in 2011 has been used to derive flaring, venting, and diesel combustion greenhouse gas and criteria air contaminant emission factors specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells. Analysis revealed that in-line ("green") completions were used at approximately 53% of wells completed in 2011, and in other cases the majority (99.5%) of flowback gases were flared rather than vented. Comparisons with limited analogous data available in the literature revealed that reported total flared and vented natural gas volumes attributable to tight gas well-completions were similar to 6 times larger than Canadian Association of Petroleum Producers (CAPP) estimates for natural gas well-completion based on wells ca. 2000, but 62% less than an equivalent emission factor that can be derived from U.S. EPA data. Newly derived emission factors for diesel combustion during well drilling and completion are thought to be among the first such data available in the open literature, where drilling-related emissions for tight gas wells drilled in Alberta in 2011 were found to have increased by a factor of 2.8 relative to a typical well drilled in Canada in 2000 due to increased drilling lengths. From well-by-well analysis of production phase flared, vented, and fuel usage natural gas volumes reported at 3846 operating tight gas wells in 2011, operational emission factors were developed. Overall results highlight the importance of operational phase GHG emissions at upstream well sites (including on-site natural gas fuel use), and the critical levels of uncertainty in current estimates of liquid unloading emissions.
A comprehensive technical analysis of available industry-reported well activity and production data for Alberta in 2011 has been used to derive flaring, venting, and diesel combustion greenhouse gas and criteria air contaminant emission factors specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells. Analysis revealed that in-line ("green") completions were used at approximately 53% of wells completed in 2011, and in other cases the majority (99.5%) of flowback gases were flared rather than vented. Comparisons with limited analogous data available in the literature revealed that reported total flared and vented natural gas volumes attributable to tight gas well-completions were similar to 6 times larger than Canadian Association of Petroleum Producers (CAPP) estimates for natural gas well-completion based on wells ca. 2000, but 62% less than an equivalent emission factor that can be derived from U.S. EPA data. Newly derived emission factors for diesel combustion during well drilling and completion are thought to be among the first such data available in the open literature, where drilling-related emissions for tight gas wells drilled in Alberta in 2011 were found to have increased by a factor of 2.8 relative to a typical well drilled in Canada in 2000 due to increased drilling lengths. From well-by-well analysis of production phase flared, vented, and fuel usage natural gas volumes reported at 3846 operating tight gas wells in 2011, operational emission factors were developed. Overall results highlight the importance of operational phase GHG emissions at upstream well sites (including on-site natural gas fuel use), and the critical levels of uncertainty in current estimates of liquid unloading emissions.
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania
Kang et al., December 2014
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania
Mary Kang, Cynthia M. Kanno, Matthew C. Reid, Xin Zhang, Denise L. Mauzerall, Michael A. Celia, Yuheng Chen, Tullis C. Onstott (2014). Proceedings of the National Academy of Sciences, 18173-18177. 10.1073/pnas.1408315111
Abstract:
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.
Life cycle greenhouse gas footprint of shale gas: a probabilistic approach
Shahriar et al., December 2014
Life cycle greenhouse gas footprint of shale gas: a probabilistic approach
Anjuman Shahriar, Rehan Sadiq, Solomon Tesfamariam (2014). Stochastic Environmental Research and Risk Assessment, 2185-2204. 10.1007/s00477-014-0874-7
Abstract:
With the increase in natural gas (NG) production in recent years, primarily from shale gas, some sources, including the US Environmental Protection Agency (EPA), have suggested that upstream methane emissions are increasing. Much of the recent controversy has centered on emissions during well drilling, testing, and completion even though emissions downstream of the wellhead are also of concern. The study critically assessed the current state of knowledge about the life cycle GHG footprint of NG, analyzed the assumptions, data and analysis methodologies used in the existing literature. This study comprehensively analyzed the emission of methane from different stage of the life of well for conventional and unconventional NG using the EPA’s revised 2011 estimates as well as other existing literature and publicly available government data. The study proposed a probabilistic model to estimate the range of total GHG footprint of NG with varying probabilities. Through the bottom up approach starting from the well construction to the delivery of NG to the small user and using Monte Carlo simulation, the study identified the critical sources of fugitive emissions from the NG. As expected, emissions from well completion and periodic emissions (e.g. liquid unloading in the case of onshore conventional wells and workovers in the case of unconventional wells) are significant contributors to the overall GHG footprint of NG, and possess large opportunity for reduction. Finally the application of probabilistic model is demonstrated through a case study using the data from the Montney and Horn River shale gas basins in the Northern British Columbia to estimate the range of total GHG footprint of shale gas with varying probabilities. The study found that the GHG footprint of Montney and Horn River wells are much smaller than that of Barnett shale (which is representative of US shale gas) due to strict flaring regulations followed in BC. The study also undercuts the outcome of Howarth et al. (Clim Chang Lett 106:679–690, 2011), which states that the GHG footprint of shale gas is at least 20 % greater than coal.
With the increase in natural gas (NG) production in recent years, primarily from shale gas, some sources, including the US Environmental Protection Agency (EPA), have suggested that upstream methane emissions are increasing. Much of the recent controversy has centered on emissions during well drilling, testing, and completion even though emissions downstream of the wellhead are also of concern. The study critically assessed the current state of knowledge about the life cycle GHG footprint of NG, analyzed the assumptions, data and analysis methodologies used in the existing literature. This study comprehensively analyzed the emission of methane from different stage of the life of well for conventional and unconventional NG using the EPA’s revised 2011 estimates as well as other existing literature and publicly available government data. The study proposed a probabilistic model to estimate the range of total GHG footprint of NG with varying probabilities. Through the bottom up approach starting from the well construction to the delivery of NG to the small user and using Monte Carlo simulation, the study identified the critical sources of fugitive emissions from the NG. As expected, emissions from well completion and periodic emissions (e.g. liquid unloading in the case of onshore conventional wells and workovers in the case of unconventional wells) are significant contributors to the overall GHG footprint of NG, and possess large opportunity for reduction. Finally the application of probabilistic model is demonstrated through a case study using the data from the Montney and Horn River shale gas basins in the Northern British Columbia to estimate the range of total GHG footprint of shale gas with varying probabilities. The study found that the GHG footprint of Montney and Horn River wells are much smaller than that of Barnett shale (which is representative of US shale gas) due to strict flaring regulations followed in BC. The study also undercuts the outcome of Howarth et al. (Clim Chang Lett 106:679–690, 2011), which states that the GHG footprint of shale gas is at least 20 % greater than coal.
Life cycle greenhouse gas emissions from Barnett Shale gas used to generate electricity
Heath et al., December 2014
Life cycle greenhouse gas emissions from Barnett Shale gas used to generate electricity
G. Heath, J. Meldrum, N. Fisher, D. Arent, M. Bazilian (2014). Journal of Unconventional Oil and Gas Resources, 46-55. 10.1016/j.juogr.2014.07.002
Abstract:
This paper presents research findings on life cycle greenhouse gas (GHG) emissions associated with natural gas production in the Barnett Shale play in Texas. The data sources and approach used in this study differ significantly from previous efforts. The authors used inventories from the year 2009 tracking emissions of regulated air pollutants by the natural gas industry in the Barnett Shale play. These inventories were collected and screened by the Texas Commission on Environmental Quality (TCEQ). These data cover the characteristics and volatile organic compound (VOC) emissions of more than 16,000 individual sources in shale gas production and processing. Translating estimated emissions of VOCs into estimates of methane and carbon dioxide emissions was accomplished through the novel compilation of spatially heterogeneous gas composition analyses. Life cycle greenhouse gas emissions associated with electricity generated from Barnett Shale gas extracted in 2009 were found to be very similar to conventional natural gas and less than half those of coal-fired electricity generation.
This paper presents research findings on life cycle greenhouse gas (GHG) emissions associated with natural gas production in the Barnett Shale play in Texas. The data sources and approach used in this study differ significantly from previous efforts. The authors used inventories from the year 2009 tracking emissions of regulated air pollutants by the natural gas industry in the Barnett Shale play. These inventories were collected and screened by the Texas Commission on Environmental Quality (TCEQ). These data cover the characteristics and volatile organic compound (VOC) emissions of more than 16,000 individual sources in shale gas production and processing. Translating estimated emissions of VOCs into estimates of methane and carbon dioxide emissions was accomplished through the novel compilation of spatially heterogeneous gas composition analyses. Life cycle greenhouse gas emissions associated with electricity generated from Barnett Shale gas extracted in 2009 were found to be very similar to conventional natural gas and less than half those of coal-fired electricity generation.
Emissions Implications of Future Natural Gas Production and Use in the Rocky Mountain Region
McLeod et al., November 2014
Emissions Implications of Future Natural Gas Production and Use in the Rocky Mountain Region
Jeffrey D. McLeod, Gregory L. Brinkman, Jana B. Milford (2014). Environmental Science & Technology, 13036-13044. 10.1021/es5029537
Abstract:
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
Reproducibility of LCA Models of Crude Oil Production
Kourosh Vafi and Adam R. Brandt, November 2014
Reproducibility of LCA Models of Crude Oil Production
Kourosh Vafi and Adam R. Brandt (2014). Environmental Science & Technology, 12978-12985. 10.1021/es501847p
Abstract:
Scientific models are ideally reproducible, with results that converge despite varying methods. In practice, divergence between models often remains due to varied assumptions, incompleteness, or simply because of avoidable flaws. We examine LCA greenhouse gas (GHG) emissions models to test the reproducibility of their estimates for well-to-refinery inlet gate (WTR) GHG emissions. We use the Oil Production Greenhouse gas Emissions Estimator (OPGEE), an open source engineering-based life cycle assessment (LCA) model, as the reference model for this analysis. We study seven previous studies based on six models. We examine the reproducibility of prior results by successive experiments that align model assumptions and boundaries. The root-mean-square error (RMSE) between results varies between ∼1 and 8 g CO2 eq/MJ LHV when model inputs are not aligned. After model alignment, RMSE generally decreases only slightly. The proprietary nature of some of the models hinders explanations for divergence between the results. Because verification of the results of LCA GHG emissions is often not possible by direct measurement, we recommend the development of open source models for use in energy policy. Such practice will lead to iterative scientific review, improvement of models, and more reliable understanding of emissions.
Scientific models are ideally reproducible, with results that converge despite varying methods. In practice, divergence between models often remains due to varied assumptions, incompleteness, or simply because of avoidable flaws. We examine LCA greenhouse gas (GHG) emissions models to test the reproducibility of their estimates for well-to-refinery inlet gate (WTR) GHG emissions. We use the Oil Production Greenhouse gas Emissions Estimator (OPGEE), an open source engineering-based life cycle assessment (LCA) model, as the reference model for this analysis. We study seven previous studies based on six models. We examine the reproducibility of prior results by successive experiments that align model assumptions and boundaries. The root-mean-square error (RMSE) between results varies between ∼1 and 8 g CO2 eq/MJ LHV when model inputs are not aligned. After model alignment, RMSE generally decreases only slightly. The proprietary nature of some of the models hinders explanations for divergence between the results. Because verification of the results of LCA GHG emissions is often not possible by direct measurement, we recommend the development of open source models for use in energy policy. Such practice will lead to iterative scientific review, improvement of models, and more reliable understanding of emissions.
Ground Gas Monitoring: Implications for Hydraulic Fracturing and CO2 Storage
Teasdale et al., November 2014
Ground Gas Monitoring: Implications for Hydraulic Fracturing and CO2 Storage
Christopher J. Teasdale, Jean A. Hall, John P. Martin, David A. C. Manning (2014). Environmental Science & Technology, 13610-13616. 10.1021/es502528c
Abstract:
Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as Carbon Capture and Storage and hydraulic fracturing ('fracking') affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for timescales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.
Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as Carbon Capture and Storage and hydraulic fracturing ('fracking') affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for timescales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.
Industry experience in deriving updated emission factors to characterize methane emissions for select emission sources in natural gas systems
Ritter et al., November 2014
Industry experience in deriving updated emission factors to characterize methane emissions for select emission sources in natural gas systems
Karin Ritter, Miriam Lev-On, Theresa Shires (2014). Carbon Management, 507-517. 10.1080/20430779.2015.1036752
Abstract:
Natural gas production is rapidly expanding globally using advanced techniques that are opening new areas to exploration and development. New techniques and practices, including those involving hydraulic fracturing, have spurred growth in natural gas based power generation that is credited with reducing greenhouse gas (GHG) emissions with the co-benefit of improved air quality. These new operating practices necessitate a thorough review of existing quantification methods for methane emissions. This paper addresses the wide ranging efforts undertaken by the American Petroleum Institute over the past decade, or more, to provide robust data for characterizing methane emissions from natural gas operations. Industry efforts to characterize emission sources that are unique to natural gas production operations are also described. In order to inform the public debate on natural gas use and its role in mitigating overall GHG emissions this paper includes a comparison of new methane emission factors derived by industry to those used for the US National GHG Inventory.
Natural gas production is rapidly expanding globally using advanced techniques that are opening new areas to exploration and development. New techniques and practices, including those involving hydraulic fracturing, have spurred growth in natural gas based power generation that is credited with reducing greenhouse gas (GHG) emissions with the co-benefit of improved air quality. These new operating practices necessitate a thorough review of existing quantification methods for methane emissions. This paper addresses the wide ranging efforts undertaken by the American Petroleum Institute over the past decade, or more, to provide robust data for characterizing methane emissions from natural gas operations. Industry efforts to characterize emission sources that are unique to natural gas production operations are also described. In order to inform the public debate on natural gas use and its role in mitigating overall GHG emissions this paper includes a comparison of new methane emission factors derived by industry to those used for the US National GHG Inventory.
Limited impact on decadal-scale climate change from increased use of natural gas
McJeon et al., October 2014
Limited impact on decadal-scale climate change from increased use of natural gas
Haewon McJeon, Jae Edmonds, Nico Bauer, Leon Clarke, Brian Fisher, Brian P. Flannery, Jérôme Hilaire, Volker Krey, Giacomo Marangoni, Raymond Mi, Keywan Riahi, Holger Rogner, Massimo Tavoni (2014). Nature, 482-485. 10.1038/nature13837
Abstract:
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
Four corners: The largest US methane anomaly viewed from space
Kort et al., October 2014
Four corners: The largest US methane anomaly viewed from space
Eric A. Kort, Christian Frankenberg, Keeley R. Costigan, Rodica Lindenmaier, Manvendra K. Dubey, Debra Wunch (2014). Geophysical Research Letters, 6898-6903. 10.1002/2014GL061503
Abstract:
Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50–0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.
Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50–0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.
The effect of natural gas supply on US renewable energy and CO2 emissions
Shearer et al., September 2014
The effect of natural gas supply on US renewable energy and CO2 emissions
Christine Shearer, John Bistline, Mason Inman, Steven J. Davis (2014). Environmental Research Letters, 094008. 10.1088/1748-9326/9/9/094008
Abstract:
Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013–55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.
Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013–55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.
Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach
Kourosh Vafi and Adam R. Brandt, September 2014
Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach
Kourosh Vafi and Adam R. Brandt (2014). Environmental Science & Technology, 10511-10518. 10.1021/es502107s
Abstract:
Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water–oil ratio (WOR) and steam–oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1–0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.
Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water–oil ratio (WOR) and steam–oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1–0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.
Carbon Footprint Analysis of Source Water for Hydraulic Fracturing: A Case Study of Mine Water Versus Freshwater
Macy et al., August 2014
Carbon Footprint Analysis of Source Water for Hydraulic Fracturing: A Case Study of Mine Water Versus Freshwater
Taylor R. Macy, Natalie A. Kruse, Ben J. Stuart (2014). Mine Water and the Environment, 20-30. 10.1007/s10230-014-0291-7
Abstract:
In the face of climate change, less carbon intensive fuels are being sought. Natural gas has been perceived as a transition fuel, producing less CO2 when burned than coal, but it is not a renewable resource. Hydrocarbon-rich shale formations contain natural gas, natural gas condensate, and oil production potential, and the extraction of these compounds has allowed the USA to become one of the largest global producers of natural gas. Horizontal drilling and hydraulic fracturing are used to extract the shale gas, but hydraulic fracturing of one well typically requires between 7 and 19 million L of water. One option being explored is the use of treated mine water as an alternative to freshwater. The Marcellus and Utica shale formations underlie much of the eastern USA, and the Utica Shale is being pursued for its high natural gas potential in eastern Ohio. Permits for wells are being approved, but concerns about the water source for hydraulic fracturing fluid are increasing. We analyzed the carbon footprints of three different water sources: treated mine water from Corning, Ohio, freshwater from the Ohio River, and freshwater from Seneca Lake near the well site. CO2 emissions for each source were calculated during pumping, transportation, and treatment of the water for a one-time well use and annual use. The primary productivity increase that occurred after removal of mine discharge or reduction due to extraction from freshwater sources was also calculated. Annually, using treated mine water would emit 110,000 t of CO2-e (CO2 equivalent) if trucked to a treatment plant or 90,000 t of CO2-e if treated on-site, while using water from the Ohio River would emit 2,000 t of CO2-e, and using water from Seneca Lake would emit 4,500 t of CO2-e, annually. Of course, decreasing the amount of unpolluted freshwater used has other environmental benefits.
In the face of climate change, less carbon intensive fuels are being sought. Natural gas has been perceived as a transition fuel, producing less CO2 when burned than coal, but it is not a renewable resource. Hydrocarbon-rich shale formations contain natural gas, natural gas condensate, and oil production potential, and the extraction of these compounds has allowed the USA to become one of the largest global producers of natural gas. Horizontal drilling and hydraulic fracturing are used to extract the shale gas, but hydraulic fracturing of one well typically requires between 7 and 19 million L of water. One option being explored is the use of treated mine water as an alternative to freshwater. The Marcellus and Utica shale formations underlie much of the eastern USA, and the Utica Shale is being pursued for its high natural gas potential in eastern Ohio. Permits for wells are being approved, but concerns about the water source for hydraulic fracturing fluid are increasing. We analyzed the carbon footprints of three different water sources: treated mine water from Corning, Ohio, freshwater from the Ohio River, and freshwater from Seneca Lake near the well site. CO2 emissions for each source were calculated during pumping, transportation, and treatment of the water for a one-time well use and annual use. The primary productivity increase that occurred after removal of mine discharge or reduction due to extraction from freshwater sources was also calculated. Annually, using treated mine water would emit 110,000 t of CO2-e (CO2 equivalent) if trucked to a treatment plant or 90,000 t of CO2-e if treated on-site, while using water from the Ohio River would emit 2,000 t of CO2-e, and using water from Seneca Lake would emit 4,500 t of CO2-e, annually. Of course, decreasing the amount of unpolluted freshwater used has other environmental benefits.
Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation
Heath et al., August 2014
Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation
Garvin A. Heath, Patrick O’Donoughue, Douglas J. Arent, Morgan Bazilian (2014). Proceedings of the National Academy of Sciences, E3167-E3176. 10.1073/pnas.1309334111
Abstract:
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations
Schneising et al., August 2014
Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations
Oliver Schneising, John P. Burrows, Russell R. Dickerson, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann (2014). Earth's Future, 548-558. 10.1002/2014EF000265
Abstract:
In the past decade there has been a massive growth in the horizontal drilling and hydraulic fracturing of shale gas and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock formations with low permeability. In North America, these unconventional domestic sources of natural gas and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions when displacing coal as a source of energy in power plants. However, fugitive methane emissions in the production process may counter the benefit over coal with respect to climate change and therefore need to be well quantified. Here we demonstrate that positive methane anomalies associated with the oil and gas industries can be detected from space and that corresponding regional emissions can be constrained using satellite observations. Based on a mass-balance approach, we estimate that methane emissions for two of the fastest growing production regions in the United States, the Bakken and Eagle Ford formations, have increased by 990 ± 650 ktCH 4 yr − 1 and 530 ± 330 ktCH 4 yr − 1 between the periods 2006–2008 and 2009–2011. Relative to the respective increases in oil and gas production, these emission estimates correspond to leakages of 10.1 ± 7.3 % and 9.1 ± 6.2 % in terms of energy content, calling immediate climate benefit into question and indicating that current inventories likely underestimate fugitive emissions from Bakken and Eagle Ford.
In the past decade there has been a massive growth in the horizontal drilling and hydraulic fracturing of shale gas and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock formations with low permeability. In North America, these unconventional domestic sources of natural gas and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions when displacing coal as a source of energy in power plants. However, fugitive methane emissions in the production process may counter the benefit over coal with respect to climate change and therefore need to be well quantified. Here we demonstrate that positive methane anomalies associated with the oil and gas industries can be detected from space and that corresponding regional emissions can be constrained using satellite observations. Based on a mass-balance approach, we estimate that methane emissions for two of the fastest growing production regions in the United States, the Bakken and Eagle Ford formations, have increased by 990 ± 650 ktCH 4 yr − 1 and 530 ± 330 ktCH 4 yr − 1 between the periods 2006–2008 and 2009–2011. Relative to the respective increases in oil and gas production, these emission estimates correspond to leakages of 10.1 ± 7.3 % and 9.1 ± 6.2 % in terms of energy content, calling immediate climate benefit into question and indicating that current inventories likely underestimate fugitive emissions from Bakken and Eagle Ford.
Natural Gas versus Coal: Is Natural Gas Better for the Climate?
Chris Busch and Eric Gimon, August 2014
Natural Gas versus Coal: Is Natural Gas Better for the Climate?
Chris Busch and Eric Gimon (2014). The Electricity Journal, 97-111. 10.1016/j.tej.2014.07.007
Abstract:
This article analyzes the level of greenhouse gas emissions attributable to electricity from natural-gas-fired power plants and coal-fired power plants, then compares the two. An analytical framework is employed that considers the key greenhouse gases released during the production and combustion of coal and natural gas: carbon dioxide and methane.
This article analyzes the level of greenhouse gas emissions attributable to electricity from natural-gas-fired power plants and coal-fired power plants, then compares the two. An analytical framework is employed that considers the key greenhouse gases released during the production and combustion of coal and natural gas: carbon dioxide and methane.