This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 23, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case–Control Study in Pennsylvania, 2009–2017
Clark et al., November 2024
Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case–Control Study in Pennsylvania, 2009–2017
Cassandra J. Clark, Nicholaus P. Johnson, Mario Soriano, Joshua L. Warren, Keli M. Sorrentino, -Lottick Nina S. Kadan, James E. Saiers, Xiaomei Ma, Nicole C. Deziel (2024). Environmental Health Perspectives, 087001. 10.1289/EHP11092
Abstract:
Background: Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. Objective: The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. Methods: We conducted a registry-based case–control study of 405 children ages 2–7 y diagnosed with ALL in Pennsylvania between 2009–2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). Results: Children with at least one UOG well within 2km 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2km 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) =1.74 = 1.74 (95% CI: 0.93, 3.27) and OR=2.35 OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. Discussion: Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD’s impacts on children’s health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092
Background: Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. Objective: The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. Methods: We conducted a registry-based case–control study of 405 children ages 2–7 y diagnosed with ALL in Pennsylvania between 2009–2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). Results: Children with at least one UOG well within 2km 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2km 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) =1.74 = 1.74 (95% CI: 0.93, 3.27) and OR=2.35 OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. Discussion: Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD’s impacts on children’s health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092
A complex bioaccumulation story in flowback and produced water from hydraulic fracturing: The role of organic compounds in inorganic accumulation in Lumbriculus variegatus
Mehler et al., July 2021
A complex bioaccumulation story in flowback and produced water from hydraulic fracturing: The role of organic compounds in inorganic accumulation in Lumbriculus variegatus
W. Tyler Mehler, Katherine N. Snihur, Yifeng Zhang, Huizhen Li, Daniel S. Alessi, Greg G. Goss (2021). Journal of Hazardous Materials, 125525. 10.1016/j.jhazmat.2021.125525
Abstract:
Hydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity. In the present study, bioaccumulation assays (7-d uptake and 7-d elimination period) with FPW (1% dilution) were conducted with the freshwater oligochaete, Lumbriculus variegatus, to evaluate the toxicokinetics of inorganic elements. To evaluate the interacting role of organics, bioaccumulation of elements in unmodified FPW was compared to activated carbon treated FPW (AC-modified). Differences in uptake and elimination rates as well as elimination steady state concentrations between unmodified and AC-modified treatments indicated that the organics play an important role in the uptake and depuration of inorganic elements in FPW. These differences in toxicokinetics between treatments aligned with observed growth rates in the worms which were higher in the AC-modified treatment. Whether growth differences resulted from increased accumulation and changes in toxicokinetic rates of inorganics or caused by direct toxicity from the organic fraction of FPW itself is still unknown and requires further research.
Hydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity. In the present study, bioaccumulation assays (7-d uptake and 7-d elimination period) with FPW (1% dilution) were conducted with the freshwater oligochaete, Lumbriculus variegatus, to evaluate the toxicokinetics of inorganic elements. To evaluate the interacting role of organics, bioaccumulation of elements in unmodified FPW was compared to activated carbon treated FPW (AC-modified). Differences in uptake and elimination rates as well as elimination steady state concentrations between unmodified and AC-modified treatments indicated that the organics play an important role in the uptake and depuration of inorganic elements in FPW. These differences in toxicokinetics between treatments aligned with observed growth rates in the worms which were higher in the AC-modified treatment. Whether growth differences resulted from increased accumulation and changes in toxicokinetic rates of inorganics or caused by direct toxicity from the organic fraction of FPW itself is still unknown and requires further research.
Fate of radium on the discharge of oil and gas produced water to the marine environment
Ahmad et al., June 2021
Fate of radium on the discharge of oil and gas produced water to the marine environment
Faraaz Ahmad, Katherine Morris, Gareth T. W. Law, Kevin G. Taylor, Samuel Shaw (2021). Chemosphere, 129550. 10.1016/j.chemosphere.2021.129550
Abstract:
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1–0.3 Bq g−1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 μm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Philibert et al., May 2021
Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers
Danielle A. Philibert, Danielle D. Lyons, Ketih B. Tierney (2021). Science of The Total Environment, 144745. 10.1016/j.scitotenv.2020.144745
Abstract:
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Shale Particle Interactions with Organic and Inorganic Hydraulic Fracturing Additives
Manz et al., February 2021
Shale Particle Interactions with Organic and Inorganic Hydraulic Fracturing Additives
Katherine E. Manz, Angelica M. Palomino, Howard Cyr, Kimberly E. Carter (2021). Applied Geochemistry, 104901. 10.1016/j.apgeochem.2021.104901
Abstract:
Natural gas, the largest source for electricity generation in the US, is produced via hydraulic fracturing. Fracturing uses water mixed with chemical additives to free natural gas from the shale formation. While downhole, these fluids contact small formation particles produced during well-perforation and remain in contact with the particles until the fluids return to the well surface. We performed experiments to investigate the physical and chemical interactions between Marcellus shale particles and fluid at high temperature (80oC). The treatments in this study include incubating shale particles in solutions containing individual organic and inorganic additives used during fracturing (hydrochloric acid, persulfate, LEB-10X, WGA, FRS, Revert Flow (RF), and BXL). The particles exhibited a measurable influence on flowback fluid chemistry when treated with chemical additives. An optimized methodology was developed for laser-based Particle Size Analysis (PSA) with a wet-dispersion unit that was then used to measure changes in particle size after treatment. The PSA results indicate that mixing speeds >2800 rpm can cause particle breakage and low speeds are required for PSA of shales. We observed no difference in particle size across treatments after incubation, indicating that clay swelling likely occurs during incubation. The influence of contact time was investigated for the inorganic treatments (persulfate and HCl containing treatments) given that these treatments resulted in higher concentrations of element release and precipitation compared to the organics additives tested. The results show that contact time is an essential consideration in shale transformation studies. Our findings link changing water chemistry to specific fracturing additives and provide key information for understanding the fluid-rock interactions.
Natural gas, the largest source for electricity generation in the US, is produced via hydraulic fracturing. Fracturing uses water mixed with chemical additives to free natural gas from the shale formation. While downhole, these fluids contact small formation particles produced during well-perforation and remain in contact with the particles until the fluids return to the well surface. We performed experiments to investigate the physical and chemical interactions between Marcellus shale particles and fluid at high temperature (80oC). The treatments in this study include incubating shale particles in solutions containing individual organic and inorganic additives used during fracturing (hydrochloric acid, persulfate, LEB-10X, WGA, FRS, Revert Flow (RF), and BXL). The particles exhibited a measurable influence on flowback fluid chemistry when treated with chemical additives. An optimized methodology was developed for laser-based Particle Size Analysis (PSA) with a wet-dispersion unit that was then used to measure changes in particle size after treatment. The PSA results indicate that mixing speeds >2800 rpm can cause particle breakage and low speeds are required for PSA of shales. We observed no difference in particle size across treatments after incubation, indicating that clay swelling likely occurs during incubation. The influence of contact time was investigated for the inorganic treatments (persulfate and HCl containing treatments) given that these treatments resulted in higher concentrations of element release and precipitation compared to the organics additives tested. The results show that contact time is an essential consideration in shale transformation studies. Our findings link changing water chemistry to specific fracturing additives and provide key information for understanding the fluid-rock interactions.
Up in smoke: characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US
Cushing et al., February 2021
Up in smoke: characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US
Lara J. Cushing, Khang Chau, Meredith Franklin, Jill E. Johnston (2021). Environmental Research Letters, 034032. 10.1088/1748-9326/abd3d4
Abstract:
Due to advances in unconventional extraction techniques, the rate of fossil fuel production in the United States (US) is higher than ever before. The disposal of waste gas via intentional combustion (flaring) from unconventional oil and gas (UOG) development has also been on the rise, and may expose nearby residents to toxic air pollutants, light pollution and noise. However, little data exists on the extent of flaring in the US or the number of people living near UOG flaring activity. Utilizing nightly sattelite observations of flaring from the Visible Infrared Imaging Radiometer Suite Nightfire product, 2010 Census data and a dataset of remotely sensed building footprints, we applied a dasymetric mapping approach to estimate the number of nightly flare events across all oil shale plays in the contiguous US between March 2012 and February 2020 and characterize the populations residing within 3 km, 5 km and 10 km of UOG flares in terms of age, race and ethnicity. We found that three basins accounted for over 83% of all UOG flaring activity in the contiguous US over the 8 year study period. We estimated that over half a million people in these basins reside within 5 km of a flare, and 39% of them lived near more than 100 nightly flares. Black, indigenous, and people of color were disproportionately exposed to flaring.
Due to advances in unconventional extraction techniques, the rate of fossil fuel production in the United States (US) is higher than ever before. The disposal of waste gas via intentional combustion (flaring) from unconventional oil and gas (UOG) development has also been on the rise, and may expose nearby residents to toxic air pollutants, light pollution and noise. However, little data exists on the extent of flaring in the US or the number of people living near UOG flaring activity. Utilizing nightly sattelite observations of flaring from the Visible Infrared Imaging Radiometer Suite Nightfire product, 2010 Census data and a dataset of remotely sensed building footprints, we applied a dasymetric mapping approach to estimate the number of nightly flare events across all oil shale plays in the contiguous US between March 2012 and February 2020 and characterize the populations residing within 3 km, 5 km and 10 km of UOG flares in terms of age, race and ethnicity. We found that three basins accounted for over 83% of all UOG flaring activity in the contiguous US over the 8 year study period. We estimated that over half a million people in these basins reside within 5 km of a flare, and 39% of them lived near more than 100 nightly flares. Black, indigenous, and people of color were disproportionately exposed to flaring.
Geochemical and Geophysical Indicators of Oil and Gas Wastewater can Trace Potential Exposure Pathways Following Releases to Surface Waters
Cozzarelli et al., October 2020
Geochemical and Geophysical Indicators of Oil and Gas Wastewater can Trace Potential Exposure Pathways Following Releases to Surface Waters
Isabelle M. Cozzarelli, Douglas B. Kent, Martin Briggs, Mark A. Engle, Adam Benthem, Katherine J. Skalak, Adam C. Mumford, Jeanne Jaeschke, Aïda Farag, John W. Lane, Denise M. Akob (2020). Science of The Total Environment, 142909. 10.1016/j.scitotenv.2020.142909
Abstract:
Releases of oil and gas (OG) wastewaters can have complex effects on stream-water quality and downstream organisms, due to sediment-water interactions and groundwater/surface water exchange. Previously, elevated concentrations of sodium (Na), chloride (Cl), barium (Ba), strontium (Sr), and lithium (Li), and trace hydrocarbons were determined to be key markers of OG wastewater releases when combined with Sr and radium (Ra) isotopic compositions. Here, we assessed the persistence of an OG wastewater spill in a creek in North Dakota using a combination of geochemical measurements and modeling, hydrologic analysis, and geophysical investigations. OG wastewater comprised 0.1 to 0.3% of the stream-water compositions at downstream sites in February and June 2015, but could not be quantified in 2016 and 2017. However, OG-wastewater markers persisted in sediments and pore water for 2.5 years after the spill and up to 7.2-km downstream from the spill site. Concentrations of OG wastewater constituents were highly variable depending on the hydrologic conditions. Electromagnetic measurements indicated substantially higher electrical conductivity in groundwater seeps below the streambed 7.2 km downstream from the spill site. Geomorphic investigations revealed mobilization of sediment is an important contaminant transport process. Labile Ba, Ra, Sr, and ammonium (NH4) concentrations extracted from sediments indicated sediments are a long-term reservoir of these constituents, both in the creek and on the floodplain. Using the drivers of ecological effects identified at this intensively studied site we identified 41 watersheds across the North Dakota landscape that may be subject to similar episodic inputs from OG wastewater spills. Effects of contaminants released to the environment during OG waste management activities remain poorly understood; however, analyses of Ra and Sr isotopic compositions, as well trace inorganic and organic compound concentrations at these sites in pore-water provide insights into potentials for animal and human exposures well outside source remediation zones.
Releases of oil and gas (OG) wastewaters can have complex effects on stream-water quality and downstream organisms, due to sediment-water interactions and groundwater/surface water exchange. Previously, elevated concentrations of sodium (Na), chloride (Cl), barium (Ba), strontium (Sr), and lithium (Li), and trace hydrocarbons were determined to be key markers of OG wastewater releases when combined with Sr and radium (Ra) isotopic compositions. Here, we assessed the persistence of an OG wastewater spill in a creek in North Dakota using a combination of geochemical measurements and modeling, hydrologic analysis, and geophysical investigations. OG wastewater comprised 0.1 to 0.3% of the stream-water compositions at downstream sites in February and June 2015, but could not be quantified in 2016 and 2017. However, OG-wastewater markers persisted in sediments and pore water for 2.5 years after the spill and up to 7.2-km downstream from the spill site. Concentrations of OG wastewater constituents were highly variable depending on the hydrologic conditions. Electromagnetic measurements indicated substantially higher electrical conductivity in groundwater seeps below the streambed 7.2 km downstream from the spill site. Geomorphic investigations revealed mobilization of sediment is an important contaminant transport process. Labile Ba, Ra, Sr, and ammonium (NH4) concentrations extracted from sediments indicated sediments are a long-term reservoir of these constituents, both in the creek and on the floodplain. Using the drivers of ecological effects identified at this intensively studied site we identified 41 watersheds across the North Dakota landscape that may be subject to similar episodic inputs from OG wastewater spills. Effects of contaminants released to the environment during OG waste management activities remain poorly understood; however, analyses of Ra and Sr isotopic compositions, as well trace inorganic and organic compound concentrations at these sites in pore-water provide insights into potentials for animal and human exposures well outside source remediation zones.
Changes to hepatic nutrient dynamics and energetics in rainbow trout (Oncorhynchus mykiss) following exposure to and recovery from hydraulic fracturing flowback and produced water
Weinrauch et al., October 2020
Changes to hepatic nutrient dynamics and energetics in rainbow trout (Oncorhynchus mykiss) following exposure to and recovery from hydraulic fracturing flowback and produced water
Alyssa M. Weinrauch, Erik J. Folkerts, Daniel S. Alessi, Greg G. Goss, Tamzin A. Blewett (2020). Science of The Total Environment, 142893. 10.1016/j.scitotenv.2020.142893
Abstract:
Hydraulic fracturing flowback and produced water (FPW) is a highly complex and heterogenous wastewater by-product of hydraulic fracturing practices. To date, no research has examined how FPW exposure to freshwater biota may affect energetic homeostasis following subsequent induction of detoxification processes. Rainbow trout (Oncorhynchus mykiss) were acutely exposed for 48 h to either 2.5% or 7.5% FPW, and hepatic metabolism was assessed either immediately or following a 3-week recovery period. Induction of xenobiotic metabolism was observed with an 8.8-fold increase in ethoxyresorufin-O-deethylase (EROD) activity after 48 h exposure to 7.5% FPW, alongside a 10.3-fold increase in the mRNA abundance of cyp1a, both of which returned to basal level after three weeks. Glucose uptake capacity was elevated by 6.8- and 12.9-fold following 2.5% and 7.5% FPW exposure, respectively, while alanine uptake was variable. Activity measurements and mRNA abundance of key enzymes involved in hepatic metabolism indicated that aerobic metabolism was maintained with exposure, as was glycolysis. Gluconeogenesis, as measured by phosphoenolpyruvate carboxykinase (PEPCK) activity, decreased by ~30% 48 h following 2.5% FPW exposure and ~20% 3 weeks after 7.5% FPW exposure. The abundance of pepck mRNA activity followed similar, yet non-significant, trends. Finally, a delayed increase in amino acid catabolism was observed, as glutamate dehydrogenase (GDH) activity was increased 2-fold in 7.5% FPW exposed fish when compared to saline control fish at the 3-week time point. We provide evidence to suggest that although hepatic metabolism is altered following acute FPW exposure, metabolic homeostasis generally returns 3-weeks post-exposure.
Hydraulic fracturing flowback and produced water (FPW) is a highly complex and heterogenous wastewater by-product of hydraulic fracturing practices. To date, no research has examined how FPW exposure to freshwater biota may affect energetic homeostasis following subsequent induction of detoxification processes. Rainbow trout (Oncorhynchus mykiss) were acutely exposed for 48 h to either 2.5% or 7.5% FPW, and hepatic metabolism was assessed either immediately or following a 3-week recovery period. Induction of xenobiotic metabolism was observed with an 8.8-fold increase in ethoxyresorufin-O-deethylase (EROD) activity after 48 h exposure to 7.5% FPW, alongside a 10.3-fold increase in the mRNA abundance of cyp1a, both of which returned to basal level after three weeks. Glucose uptake capacity was elevated by 6.8- and 12.9-fold following 2.5% and 7.5% FPW exposure, respectively, while alanine uptake was variable. Activity measurements and mRNA abundance of key enzymes involved in hepatic metabolism indicated that aerobic metabolism was maintained with exposure, as was glycolysis. Gluconeogenesis, as measured by phosphoenolpyruvate carboxykinase (PEPCK) activity, decreased by ~30% 48 h following 2.5% FPW exposure and ~20% 3 weeks after 7.5% FPW exposure. The abundance of pepck mRNA activity followed similar, yet non-significant, trends. Finally, a delayed increase in amino acid catabolism was observed, as glutamate dehydrogenase (GDH) activity was increased 2-fold in 7.5% FPW exposed fish when compared to saline control fish at the 3-week time point. We provide evidence to suggest that although hepatic metabolism is altered following acute FPW exposure, metabolic homeostasis generally returns 3-weeks post-exposure.
Exposure to Hydraulic Fracturing Flowback Water Impairs Mahi-Mahi (Coryphaena hippurus) Cardiomyocyte Contractile Function and Swimming Performance
Folkerts et al., October 2020
Exposure to Hydraulic Fracturing Flowback Water Impairs Mahi-Mahi (Coryphaena hippurus) Cardiomyocyte Contractile Function and Swimming Performance
Erik J. Folkerts, Rachael M. Heuer, Shannon Flynn, John D. Stieglitz, Daniel D. Benetti, Daniel S. Alessi, Greg G. Goss, Martin Grosell (2020). Environmental Science & Technology, . 10.1021/acs.est.0c02719
Abstract:
Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi (Coryphaena hippurus—hereafter referred to as “mahi”), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds (Ucrit) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.
Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi (Coryphaena hippurus—hereafter referred to as “mahi”), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds (Ucrit) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.
Forensic tracers of exposure to produced water in freshwater mussels: a preliminary assessment of Ba, Sr, and cyclic hydrocarbons
Piotrowski et al., September 2020
Forensic tracers of exposure to produced water in freshwater mussels: a preliminary assessment of Ba, Sr, and cyclic hydrocarbons
Paulina K. Piotrowski, Travis L. Tasker, Thomas J. Geeza, Bonnie McDevitt, David P. Gillikin, Nathaniel R. Warner, Frank L. Dorman (2020). Scientific Reports, 15416. 10.1038/s41598-020-72014-6
Abstract:
Hydraulic fracturing is often criticized due in part to the potential degradation of ground and surface water quality by high-salinity produced water generated during well stimulation and production. This preliminary study evaluated the response of the freshwater mussel, Elliptio complanata, after exposure to produced water. A limited number of adult mussels were grown over an 8-week period in tanks dosed with produced water collected from a hydraulically fractured well. The fatty tissue and carbonate shells were assessed for accumulation of both inorganic and organic pollutants. Ba, Sr, and cyclic hydrocarbons indicated the potential to accumulate in the soft tissue of freshwater mussels following exposure to diluted oil and gas produced water. Exposed mussels showed accumulation of Ba in the soft tissue several hundred times above background water concentrations and increased concentrations of Sr. Cyclic hydrocarbons were detected in dosed mussels and principle component analysis of gas chromatograph time-of-flight mass spectrometer results could be a novel tool to help identify areas where aquatic organisms are impacted by oil and gas produced water, but larger studies with greater replication are necessary to confirm these results.
Hydraulic fracturing is often criticized due in part to the potential degradation of ground and surface water quality by high-salinity produced water generated during well stimulation and production. This preliminary study evaluated the response of the freshwater mussel, Elliptio complanata, after exposure to produced water. A limited number of adult mussels were grown over an 8-week period in tanks dosed with produced water collected from a hydraulically fractured well. The fatty tissue and carbonate shells were assessed for accumulation of both inorganic and organic pollutants. Ba, Sr, and cyclic hydrocarbons indicated the potential to accumulate in the soft tissue of freshwater mussels following exposure to diluted oil and gas produced water. Exposed mussels showed accumulation of Ba in the soft tissue several hundred times above background water concentrations and increased concentrations of Sr. Cyclic hydrocarbons were detected in dosed mussels and principle component analysis of gas chromatograph time-of-flight mass spectrometer results could be a novel tool to help identify areas where aquatic organisms are impacted by oil and gas produced water, but larger studies with greater replication are necessary to confirm these results.
Estimating Truck Traffic Generated from Well Developments on Low-Volume Roads
Ioannis Tsapakis, July 2020
Estimating Truck Traffic Generated from Well Developments on Low-Volume Roads
Ioannis Tsapakis (2020). Transportation Research Record, 0361198120935870. 10.1177/0361198120935870
Abstract:
Recent advances in horizontal drilling and hydraulic fracturing technologies have allowed producers to extract oil and gas from thin reservoirs that may not be economically viable through vertical drilling. While the new hydraulic fracturing technologies have resulted in substantial economic benefits for the state of Texas, they tend to generate high volumes of truck traffic that diversely affect the transportation system. Many of the affected roads were designed and built several decades ago to meet low traffic demand levels and not heavy repetitive truck loads. The goal of this study is to enhance state agencies’ ability to determine the truck traffic associated with fracking in existing and new wells based on several well characteristics. This paper explores spatio-temporal trends in hydraulic fracturing in Texas and develops a methodology that agencies can use to estimate the amount of water and the number of trucks needed to frack and fully develop a well. The analysis revealed that fracking horizontal wells generates eight times more water and, therefore, truck traffic than vertical wells. The relationship between water volume versus well length is non-linear. The length of laterals has a very strong correlation with frack water (0.818) and sand (0.763), while the vertical well depth has a weak to negligible relationship with fracking materials. The two prediction models presented in the paper produced statistically similar results with average errors of less than 20%. The paper explains how the predicted water volumes can be converted into the number of trucks needed to frack and fully develop a well.
Recent advances in horizontal drilling and hydraulic fracturing technologies have allowed producers to extract oil and gas from thin reservoirs that may not be economically viable through vertical drilling. While the new hydraulic fracturing technologies have resulted in substantial economic benefits for the state of Texas, they tend to generate high volumes of truck traffic that diversely affect the transportation system. Many of the affected roads were designed and built several decades ago to meet low traffic demand levels and not heavy repetitive truck loads. The goal of this study is to enhance state agencies’ ability to determine the truck traffic associated with fracking in existing and new wells based on several well characteristics. This paper explores spatio-temporal trends in hydraulic fracturing in Texas and develops a methodology that agencies can use to estimate the amount of water and the number of trucks needed to frack and fully develop a well. The analysis revealed that fracking horizontal wells generates eight times more water and, therefore, truck traffic than vertical wells. The relationship between water volume versus well length is non-linear. The length of laterals has a very strong correlation with frack water (0.818) and sand (0.763), while the vertical well depth has a weak to negligible relationship with fracking materials. The two prediction models presented in the paper produced statistically similar results with average errors of less than 20%. The paper explains how the predicted water volumes can be converted into the number of trucks needed to frack and fully develop a well.
Assessing Contamination of Stream Networks near Shale Gas Development Using a New Geospatial Tool
Agarwal et al., June 2020
Assessing Contamination of Stream Networks near Shale Gas Development Using a New Geospatial Tool
Amal Agarwal, Tao Wen, Alex Chen, Anna Yinqi Zhang, Xianzeng Niu, Xiang Zhan, Lingzhou Xue, Susan L. Brantley (2020). Environmental Science & Technology, . 10.1021/acs.est.9b06761
Abstract:
Chemical spills in streams can impact ecosystem or human health. Typically, the public learns of spills from reports from industry, media, or government rather than monitoring data. For example, ∼1300 spills (76 ≥ 400 gallons or ∼1500 L) were reported from 2007 to 2014 by the regulator for natural gas wellpads in the Marcellus shale region of Pennsylvania (U.S.), a region of extensive drilling and hydraulic fracturing. Only one such incident of stream contamination in Pennsylvania has been documented with water quality data in peer-reviewed literature. This could indicate that spills (1) were small or contained on wellpads, (2) were diluted, biodegraded, or obscured by other contaminants, (3) were not detected because of sparse monitoring, or (4) were not detected because of the difficulties of inspecting data for complex stream networks. As a first step in addressing the last problem, we developed a geospatial-analysis tool, GeoNet, that analyzes stream networks to detect statistically significant changes between background and potentially impacted sites. GeoNet was used on data in the Water Quality Portal for the Pennsylvania Marcellus region. With the most stringent statistical tests, GeoNet detected 0.2% to 2% of the known contamination incidents (Na ± Cl) in streams. With denser sensor networks, tools like GeoNet could allow real-time detection of polluting events.
Chemical spills in streams can impact ecosystem or human health. Typically, the public learns of spills from reports from industry, media, or government rather than monitoring data. For example, ∼1300 spills (76 ≥ 400 gallons or ∼1500 L) were reported from 2007 to 2014 by the regulator for natural gas wellpads in the Marcellus shale region of Pennsylvania (U.S.), a region of extensive drilling and hydraulic fracturing. Only one such incident of stream contamination in Pennsylvania has been documented with water quality data in peer-reviewed literature. This could indicate that spills (1) were small or contained on wellpads, (2) were diluted, biodegraded, or obscured by other contaminants, (3) were not detected because of sparse monitoring, or (4) were not detected because of the difficulties of inspecting data for complex stream networks. As a first step in addressing the last problem, we developed a geospatial-analysis tool, GeoNet, that analyzes stream networks to detect statistically significant changes between background and potentially impacted sites. GeoNet was used on data in the Water Quality Portal for the Pennsylvania Marcellus region. With the most stringent statistical tests, GeoNet detected 0.2% to 2% of the known contamination incidents (Na ± Cl) in streams. With denser sensor networks, tools like GeoNet could allow real-time detection of polluting events.
Particulate Matter Emissions Associated with Marcellus Shale Drilling Waste Disposal and Transport
Mol et al., June 2020
Particulate Matter Emissions Associated with Marcellus Shale Drilling Waste Disposal and Transport
Melvut Furkan Mol, Mengfan Li, Jeremy M. Gernand (2020). Journal of the Air & Waste Management Association, null. 10.1080/10962247.2020.1772901
Abstract:
This study models emissions quantities and neighboring exposure concentrations of six airborne pollutants, including PM10, PM2.5, crystalline silica, arsenic, uranium, and barium, that result from the disposal of Marcellus shale drill cuttings waste during the 2011-to-2017 period. Using these predicted exposures, this study evaluates current setback distances required in Pennsylvania from waste facilities. For potential residents living at the perimeter of the current setback distance, 274 m (900 ft), a waste disposal rate of 612.4 metric tons per day at landfills (the 99th percentile in record) does not result in exceedances of the exposure limits for any of the six investigated pollutants. However, the current setback distance can result in exceedance with respect to the 24-hr daily concentration standards for PM10 and PM2.5 established in the National Air Ambient Quality Standards (NAAQS), if daily waste disposal rate surpasses 900 metric tons per day. Dry depositions of barium-containing and uranium-containing particulate matter should not be a danger to public health based on these results. To investigate the air quality impacts of waste transportation and the potential for reductions, this paper describes an optimization of landfill locations in Pennsylvania indicating the potential benefits in reduced environmental health hazard level possible by decreasing the distance traveled by waste disposal trucks. This strategy could reduce annual emissions of PM10 and PM2.5 by a mean of 64% and reduce the expected number of annual fatal accidents by nearly half and should be considered a potential risk management goal in the long run. Therefore, policy to limit or encourage reduction of distances traveled by waste removal trucks and manage setback distances as a function of delivered waste quantities is merited. Implications This study shows the necessity of reviewing current setback distance required in Pennsylvania, which might not ensure 24-hr mean PM10 and PM2.5 levels below the values stated in National Ambient Air Quality Standards for the residents living at the perimeter. Furthermore, this study also reveals potential tremendous benefits from optimizing location of landfills accepting drill cuttings within Pennsylvania, with PM10 and PM2.5 emission, total distance traveled shrinking, and number of fatal accidents shrinking by nearly half.
This study models emissions quantities and neighboring exposure concentrations of six airborne pollutants, including PM10, PM2.5, crystalline silica, arsenic, uranium, and barium, that result from the disposal of Marcellus shale drill cuttings waste during the 2011-to-2017 period. Using these predicted exposures, this study evaluates current setback distances required in Pennsylvania from waste facilities. For potential residents living at the perimeter of the current setback distance, 274 m (900 ft), a waste disposal rate of 612.4 metric tons per day at landfills (the 99th percentile in record) does not result in exceedances of the exposure limits for any of the six investigated pollutants. However, the current setback distance can result in exceedance with respect to the 24-hr daily concentration standards for PM10 and PM2.5 established in the National Air Ambient Quality Standards (NAAQS), if daily waste disposal rate surpasses 900 metric tons per day. Dry depositions of barium-containing and uranium-containing particulate matter should not be a danger to public health based on these results. To investigate the air quality impacts of waste transportation and the potential for reductions, this paper describes an optimization of landfill locations in Pennsylvania indicating the potential benefits in reduced environmental health hazard level possible by decreasing the distance traveled by waste disposal trucks. This strategy could reduce annual emissions of PM10 and PM2.5 by a mean of 64% and reduce the expected number of annual fatal accidents by nearly half and should be considered a potential risk management goal in the long run. Therefore, policy to limit or encourage reduction of distances traveled by waste removal trucks and manage setback distances as a function of delivered waste quantities is merited. Implications This study shows the necessity of reviewing current setback distance required in Pennsylvania, which might not ensure 24-hr mean PM10 and PM2.5 levels below the values stated in National Ambient Air Quality Standards for the residents living at the perimeter. Furthermore, this study also reveals potential tremendous benefits from optimizing location of landfills accepting drill cuttings within Pennsylvania, with PM10 and PM2.5 emission, total distance traveled shrinking, and number of fatal accidents shrinking by nearly half.
Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists
Tachachartvanich et al., May 2020
Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists
Phum Tachachartvanich, Ettayapuram Ramaprasad Azhagiya Singam, Kathleen A. Durkin, Martyn T. Smith, Michele A. La Merrill (2020). Chemosphere, 127178. 10.1016/j.chemosphere.2020.127178
Abstract:
Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X–100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X–100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X–100 with that of its structurally similar chemical, Genapol®X–080. Interestingly, both Genapol®X–100 and Genapol®X–080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 μM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X–100 and Genapol®X–080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X–100 and Genapol®X–080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X–100 could cause adverse endocrine health effects.
Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X–100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X–100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X–100 with that of its structurally similar chemical, Genapol®X–080. Interestingly, both Genapol®X–100 and Genapol®X–080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 μM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X–100 and Genapol®X–080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X–100 and Genapol®X–080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X–100 could cause adverse endocrine health effects.
Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective
Folkerts et al., April 2020
Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective
Erik J. Folkerts, Greg G. Goss, Tamzin A. Blewett (2020). Reviews of Environmental Contamination and Toxicology, . 10.1007/398_2020_43
Abstract:
Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.
Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.
A review about radioactivity in TENORMs of produced water waste from petroleum industry and its environmental and health effects
Ali et al., April 2020
A review about radioactivity in TENORMs of produced water waste from petroleum industry and its environmental and health effects
Mohsen M.M. Ali, Hongtao Zhao, Zhongyu Li, Anour A.T. Ayoub (2020). IOP Conference Series: Earth and Environmental Science, 012120. 10.1088/1755-1315/467/1/012120
Abstract:
Understanding the effects of hydraulic fracturing flowback and produced water (FPW) to the aquatic invertebrate, Lumbriculus variegatus under various exposure regimes
Mehler et al., April 2020
Understanding the effects of hydraulic fracturing flowback and produced water (FPW) to the aquatic invertebrate, Lumbriculus variegatus under various exposure regimes
W. Tyler Mehler, Andrew Nagel, Shannon Flynn, Yifeng Zhang, Chenxing Sun, Jonathan Martin, Daniel Alessi, Greg G. Goss (2020). Environmental Pollution, 113889. 10.1016/j.envpol.2019.113889
Abstract:
Hydraulic fracturing of horizontal wells is a cost effective means for extracting oil and gas from low permeability formations. Hydraulic fracturing often produces considerable volumes of flowback and produced water (FPW). FPW associated with hydraulic fracturing has been shown to be a complex, often brackish mixture containing a variety of anthropogenic and geogenic compounds. In the present study, the risk of FPW releases to aquatic systems was studied using the model benthic invertebrate, Lumbriculus variegatus and field-collected FPW from a fractured well in Alberta. Acute, chronic, and pulse toxicity were evaluated to better understand the implications of accidental FPW releases to aquatic environments. Although L. variegatus is thought to have a high tolerance to many stressors, acute toxicity was significant at low concentrations (i.e. high dilutions) of FPW (48 h LC50: 4–5%). Chronic toxicity (28 d)of FPW in this species was even more pronounced with LC50s (survival/reproduction) and EC50s (total mass) at dilutions as low as 0.22% FPW. Investigations evaluating pulse toxicity (6 h and 48 h exposure) showed a significant amount of latent mortality occurring when compared to the acute results. Additionally, causality in acute and chronic bioassays differed as acute toxicity appeared to be primarily driven by salinity, which was not the case for chronic toxicity, as other stressors appear to be important as well. The findings of this study show the importance of evaluating multiple exposure regimes, the complexity of FPW, and also shows the potential aquatic risk posed by FPW releases.
Hydraulic fracturing of horizontal wells is a cost effective means for extracting oil and gas from low permeability formations. Hydraulic fracturing often produces considerable volumes of flowback and produced water (FPW). FPW associated with hydraulic fracturing has been shown to be a complex, often brackish mixture containing a variety of anthropogenic and geogenic compounds. In the present study, the risk of FPW releases to aquatic systems was studied using the model benthic invertebrate, Lumbriculus variegatus and field-collected FPW from a fractured well in Alberta. Acute, chronic, and pulse toxicity were evaluated to better understand the implications of accidental FPW releases to aquatic environments. Although L. variegatus is thought to have a high tolerance to many stressors, acute toxicity was significant at low concentrations (i.e. high dilutions) of FPW (48 h LC50: 4–5%). Chronic toxicity (28 d)of FPW in this species was even more pronounced with LC50s (survival/reproduction) and EC50s (total mass) at dilutions as low as 0.22% FPW. Investigations evaluating pulse toxicity (6 h and 48 h exposure) showed a significant amount of latent mortality occurring when compared to the acute results. Additionally, causality in acute and chronic bioassays differed as acute toxicity appeared to be primarily driven by salinity, which was not the case for chronic toxicity, as other stressors appear to be important as well. The findings of this study show the importance of evaluating multiple exposure regimes, the complexity of FPW, and also shows the potential aquatic risk posed by FPW releases.
Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of effects on adult health, behavior, and disease
Nagel et al., March 2020
Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of effects on adult health, behavior, and disease
S. C. Nagel, C. D. Kassotis, L. N. Vandenberg, B. P. Lawrence, J. Robert, V. D. Balise (2020). Molecular and Cellular Endocrinology, 110722. 10.1016/j.mce.2020.110722
Abstract:
Unconventional oil and natural gas extraction (UOG) combines directional drilling and hydraulic fracturing and produces billions of liters of wastewater per year. Herein, we review experimental studies that evaluated the potential endocrine-mediated health impacts of exposure to a mixture of 23 UOG chemicals commonly found in wastewater. The purpose of this manuscript is to synthesize and summarize a body of work using the same UOG-mix but with different model systems and physiological endpoints in multiple experiments. The studies reviewed were conducted in laboratory animals (mice or tadpoles) and human tissue culture cells. A key feature of the in vivo studies was the use of four environmentally relevant doses spanning three orders of magnitude ranging from concentrations found in surface and ground water in UOG dense areas to concentrations found in UOG wastewater. This UOG-mix exhibited potent antagonist activity for the estrogen, androgen, glucocorticoid, progesterone, and thyroid receptors in human tissue culture cells. Subsequently, pregnant mice were administered the UOG-mix in drinking water and offspring were examined in adulthood or to tadpoles. Developmental exposure profoundly impacted pituitary hormone concentrations, reduced sperm counts, altered folliculogenesis, and increased mammary gland ductal density and preneoplastic lesions in mice. It also altered energy expenditure, exploratory and risk-taking behavior, the immune system in three immune models in mice, and affected basal and antiviral immunity in frogs. These findings highlight the diverse systems affected by developmental EDC exposure and the need to examine human and animal health in UOG regions.
Unconventional oil and natural gas extraction (UOG) combines directional drilling and hydraulic fracturing and produces billions of liters of wastewater per year. Herein, we review experimental studies that evaluated the potential endocrine-mediated health impacts of exposure to a mixture of 23 UOG chemicals commonly found in wastewater. The purpose of this manuscript is to synthesize and summarize a body of work using the same UOG-mix but with different model systems and physiological endpoints in multiple experiments. The studies reviewed were conducted in laboratory animals (mice or tadpoles) and human tissue culture cells. A key feature of the in vivo studies was the use of four environmentally relevant doses spanning three orders of magnitude ranging from concentrations found in surface and ground water in UOG dense areas to concentrations found in UOG wastewater. This UOG-mix exhibited potent antagonist activity for the estrogen, androgen, glucocorticoid, progesterone, and thyroid receptors in human tissue culture cells. Subsequently, pregnant mice were administered the UOG-mix in drinking water and offspring were examined in adulthood or to tadpoles. Developmental exposure profoundly impacted pituitary hormone concentrations, reduced sperm counts, altered folliculogenesis, and increased mammary gland ductal density and preneoplastic lesions in mice. It also altered energy expenditure, exploratory and risk-taking behavior, the immune system in three immune models in mice, and affected basal and antiviral immunity in frogs. These findings highlight the diverse systems affected by developmental EDC exposure and the need to examine human and animal health in UOG regions.
Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review
Davoodi et al., January 2020
Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review
Seyyed Mohammadreza Davoodi, Saba Miri, Mehrdad Taheran, Satinder Kaur Brar, Rosa Galvez, Richard Martel (2020). Environmental Science & Technology, . 10.1021/acs.est.9b00906
Abstract:
It is a general understanding that unconventional oil is petroleum-extracted and processed into petroleum products using unconventional means. The recent growth in the United States (US) shale oil production and the lack of refinery in Canada built for heavy crude processes have resulted in a significant increase in U.S imports of unconventional oil since 2018. This has increased the risk of incidents and catastrophic emergencies during the transportation of unconventional oils using transmission pipelines and train rails. A great deal of effort has been made to address the remediation of contaminated soil/sediment following the traditional oil spills. However, spill response and clean-up techniques (e.g., oil recuperation, soil-sediment-water treatments) showed slow and inefficient performance when it came to unconventional oil, bringing larger associated environmental impacts in need of investigation. To the best of our knowledge, there is no coherent review available on the biodegradability of unconventional oil, including bitumen and Bakken oil. Hence, in view of the insufficient information and contrasting results obtained on the remediation of petroleum, this review is an attempt to fill the gap by presenting the collective understanding and critical analysis of the literature on bioremediation of products from the oil sand and shale (e.g., Dilbit and Bakken oil). This can help evaluate the different aspects of hydrocarbon biodegradation and identify the knowledge gaps in the literature.
It is a general understanding that unconventional oil is petroleum-extracted and processed into petroleum products using unconventional means. The recent growth in the United States (US) shale oil production and the lack of refinery in Canada built for heavy crude processes have resulted in a significant increase in U.S imports of unconventional oil since 2018. This has increased the risk of incidents and catastrophic emergencies during the transportation of unconventional oils using transmission pipelines and train rails. A great deal of effort has been made to address the remediation of contaminated soil/sediment following the traditional oil spills. However, spill response and clean-up techniques (e.g., oil recuperation, soil-sediment-water treatments) showed slow and inefficient performance when it came to unconventional oil, bringing larger associated environmental impacts in need of investigation. To the best of our knowledge, there is no coherent review available on the biodegradability of unconventional oil, including bitumen and Bakken oil. Hence, in view of the insufficient information and contrasting results obtained on the remediation of petroleum, this review is an attempt to fill the gap by presenting the collective understanding and critical analysis of the literature on bioremediation of products from the oil sand and shale (e.g., Dilbit and Bakken oil). This can help evaluate the different aspects of hydrocarbon biodegradation and identify the knowledge gaps in the literature.
Forecasting concentrations of organic chemicals in the vadose zone caused by spills of hydraulic fracturing wastewater
Ma et al., December 2019
Forecasting concentrations of organic chemicals in the vadose zone caused by spills of hydraulic fracturing wastewater
Lanting Ma, Antonio Hurtado, Sonsoles Eguilior, Juan F. Llamas Borrajo (2019). Science of The Total Environment, 133911. 10.1016/j.scitotenv.2019.133911
Abstract:
The return water from hydraulic fracturing operations is characterised by high concentrations of salts and toxic organic compounds. This water is stored on the surface in storage tanks and/or ponds. Wastewater spills caused by inappropriate storage can lead to the contamination of various environmental compartments, thus posing a risk to human health. Such risk can be determined by estimating the concentrations of the substances in the storage system and the behaviour of the same in function of the characteristics of the environment in which they are released. To this end, here we addressed the evolution of the concentrations of pollutants in a tank used to store wastewater from hydraulic fracturing operations. To do this, we estimated both the volume of flowback and the concentrations of the pollutants found in these waters. We then examined the dynamic behaviour of spill-derived compounds in the various environmental compartments in function of the conditions of the medium (humid, semi-arid, and arid). This approach allowed us to rank the hazard posed by the chemical compounds in question, as well as to determine those parameters associated with both the compounds and external natural conditions that contribute to environmental risk. Our results shed greater light on the mechanism by which external environmental variables (especially recharge rate) influence the migration of organic compounds in the vadose zone, and contribute to the prediction of their concentrations. Also, by estimating the time that chemicals remain in contaminated areas, we identify the phases of contamination that pose the greatest risk to human health. In summary, the approach used herein allows the ranking of compounds on the basis of risk to human health and can thus facilitate the design of pollutant management strategies. Of note, our ranked list highlights the relevance of benzene.
The return water from hydraulic fracturing operations is characterised by high concentrations of salts and toxic organic compounds. This water is stored on the surface in storage tanks and/or ponds. Wastewater spills caused by inappropriate storage can lead to the contamination of various environmental compartments, thus posing a risk to human health. Such risk can be determined by estimating the concentrations of the substances in the storage system and the behaviour of the same in function of the characteristics of the environment in which they are released. To this end, here we addressed the evolution of the concentrations of pollutants in a tank used to store wastewater from hydraulic fracturing operations. To do this, we estimated both the volume of flowback and the concentrations of the pollutants found in these waters. We then examined the dynamic behaviour of spill-derived compounds in the various environmental compartments in function of the conditions of the medium (humid, semi-arid, and arid). This approach allowed us to rank the hazard posed by the chemical compounds in question, as well as to determine those parameters associated with both the compounds and external natural conditions that contribute to environmental risk. Our results shed greater light on the mechanism by which external environmental variables (especially recharge rate) influence the migration of organic compounds in the vadose zone, and contribute to the prediction of their concentrations. Also, by estimating the time that chemicals remain in contaminated areas, we identify the phases of contamination that pose the greatest risk to human health. In summary, the approach used herein allows the ranking of compounds on the basis of risk to human health and can thus facilitate the design of pollutant management strategies. Of note, our ranked list highlights the relevance of benzene.
Characterizing and modeling environmental emergency of unconventional oil and gas spills in the USA: Life-year versus spill factors
Qingmin Meng, November 2019
Characterizing and modeling environmental emergency of unconventional oil and gas spills in the USA: Life-year versus spill factors
Qingmin Meng (2019). Journal of Cleaner Production, 117794. 10.1016/j.jclepro.2019.117794
Abstract:
Significantly reducing consumers' electric bills and producing more jobs in USA, the remarkable growth of unconventional oil and gas (UOG) especially shale gas production in the last decade has made an impressive accomplishment. However, threatening the environment caused by UOG spills, UOG has caused enormous concerns about public health risks, there is minimized research examining the UOG spills’ causal mechanism and its spatial and temporal characteristics, which could play pivotal roles in risk control and environmental protection. Using two states Colorado (CO) and New Mexico (NM) in the USA with detailed UOG spill observations from 2005 to 2014, this study designs multi-categorical statistical tests and models to examine the factors that characterize UOG spills including spilled volume, life-year, cause, pathway, and spilled material. The ANOVA of spilled volumes across life-years has a p values 0.517, and hence the differences in spilled volumes among life-years are not significant in both CO or NM, but spilled materials are significantly between life-year 0 and other life-years with a p-value 0.0001. Based on a series of Poisson regression models for the association between pathway and spilled material and the conditional association given causal mechanism, the Chi-squared tests have p-values less than 0.00001, which shows both joint dependence and conditional dependence of pathway and spilled materials by controlling causal factors are significant in both CO and NM. Furthermore, spatiotemporal hot and cold spots of UOG spills are significant in CO, but they are not significant at p-value 0.01 in NM. This study is the first time to analyze and model the multivariate factors of UOG spills, which provides the first-hand insight to the characteristics of spills and to the monitoring and mitigation of potential risks in the lifetime of UOG operations.
Significantly reducing consumers' electric bills and producing more jobs in USA, the remarkable growth of unconventional oil and gas (UOG) especially shale gas production in the last decade has made an impressive accomplishment. However, threatening the environment caused by UOG spills, UOG has caused enormous concerns about public health risks, there is minimized research examining the UOG spills’ causal mechanism and its spatial and temporal characteristics, which could play pivotal roles in risk control and environmental protection. Using two states Colorado (CO) and New Mexico (NM) in the USA with detailed UOG spill observations from 2005 to 2014, this study designs multi-categorical statistical tests and models to examine the factors that characterize UOG spills including spilled volume, life-year, cause, pathway, and spilled material. The ANOVA of spilled volumes across life-years has a p values 0.517, and hence the differences in spilled volumes among life-years are not significant in both CO or NM, but spilled materials are significantly between life-year 0 and other life-years with a p-value 0.0001. Based on a series of Poisson regression models for the association between pathway and spilled material and the conditional association given causal mechanism, the Chi-squared tests have p-values less than 0.00001, which shows both joint dependence and conditional dependence of pathway and spilled materials by controlling causal factors are significant in both CO and NM. Furthermore, spatiotemporal hot and cold spots of UOG spills are significant in CO, but they are not significant at p-value 0.01 in NM. This study is the first time to analyze and model the multivariate factors of UOG spills, which provides the first-hand insight to the characteristics of spills and to the monitoring and mitigation of potential risks in the lifetime of UOG operations.
Fuzzy fault tree analysis of hydraulic fracturing flowback water storage failure
Hu et al., October 2019
Fuzzy fault tree analysis of hydraulic fracturing flowback water storage failure
Guangji Hu, Hieuchi Phan, Rachid Ouache, Himani Gandhi, Kasun Hewage, Rehan Sadiq (2019). Journal of Natural Gas Science and Engineering, 103039. 10.1016/j.jngse.2019.103039
Abstract:
Unintended release of flowback water as a result of above-ground walled storage system (AGWSS) failure was studied using a fuzzy fault tree analysis (FFTA). A fault tree comprising 45 basic events was constructed, and knowledge gathered through expert elicitation was used to estimate the occurrence possibilities of basic events. Fuzzy logic was introduced to reduce the epistemic uncertainties in expert judgments. Consistency analysis and grey pairwise comparison techniques were used to weight the judgments from different experts. The result of a case study shows that the failure probability of AGWSS was estimated to be 5.75E-04, indicating a relatively low level of failure possibility comparing to other systems used for oil and gas production. Importance analysis of basic events indicates that loss of containment integrity, water loading accidents, and external catastrophes are critical causes responsible for AGWSS failure. The developed FFTA methodology can be used by the unconventional gas industry for mitigation of flowback water spill risk.
Unintended release of flowback water as a result of above-ground walled storage system (AGWSS) failure was studied using a fuzzy fault tree analysis (FFTA). A fault tree comprising 45 basic events was constructed, and knowledge gathered through expert elicitation was used to estimate the occurrence possibilities of basic events. Fuzzy logic was introduced to reduce the epistemic uncertainties in expert judgments. Consistency analysis and grey pairwise comparison techniques were used to weight the judgments from different experts. The result of a case study shows that the failure probability of AGWSS was estimated to be 5.75E-04, indicating a relatively low level of failure possibility comparing to other systems used for oil and gas production. Importance analysis of basic events indicates that loss of containment integrity, water loading accidents, and external catastrophes are critical causes responsible for AGWSS failure. The developed FFTA methodology can be used by the unconventional gas industry for mitigation of flowback water spill risk.
Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir
Osselin et al., October 2019
Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir
F. Osselin, S. Saad, M. Nightingale, G. Hearn, A-M. Desaulty, E. C. Gaucher, C. R. Clarkson, W. Kloppmann, B. Mayer (2019). Science of The Total Environment, 1389-1400. 10.1016/j.scitotenv.2019.07.066
Abstract:
Although multistage hydraulic fracturing is routinely performed for the extraction of hydrocarbon resources from low permeability reservoirs, the downhole geochemical processes linked to the interaction of fracturing fluids with formation brine and reservoir mineralogy remain poorly understood. We present a geochemical dataset of flowback and produced water samples from a hydraulically fractured reservoir in the Montney Formation, Canada, analyzed for major and trace elements and stable isotopes. The dataset consists in 25 samples of flowback and produced waters from a single well, as well as produced water samples from 16 other different producing wells collected in the same field. Additionally, persulfate breaker samples as well as anhydrite and pyrite from cores were also analyzed. The objectives of this study were to understand the geochemical interactions between formation and fracturing fluids and their consequences in the context of tight gas exploitation. The analysis of this dataset allowed for a comprehensive understanding of the coupled downhole geochemical processes, linked in particular to the action of the oxidative breaker. Flowback fluid chemistries were determined to be the result of mixing of formation brine with the hydraulic fracturing fluids as well as coupled geochemical reactions with the reservoir rock such as dissolution of anhydrite and dolomite; pyrite and organic matter oxidation; and calcite, barite, celestite, iron oxides and possibly calcium sulfate scaling. In particular, excess sulfate in the collected samples was found to be mainly derived from anhydrite dissolution, and not from persulfate breaker or pyrite oxidation. The release of heavy metals from the oxidation activity of the breaker was detectable but concentrations of heavy metals in produced fluids remained below the World Health Organization guidelines for drinking water and are therefore of no concern. This is due in part to the co-precipitation of heavy metals with iron oxides and possibly sulfate minerals.
Although multistage hydraulic fracturing is routinely performed for the extraction of hydrocarbon resources from low permeability reservoirs, the downhole geochemical processes linked to the interaction of fracturing fluids with formation brine and reservoir mineralogy remain poorly understood. We present a geochemical dataset of flowback and produced water samples from a hydraulically fractured reservoir in the Montney Formation, Canada, analyzed for major and trace elements and stable isotopes. The dataset consists in 25 samples of flowback and produced waters from a single well, as well as produced water samples from 16 other different producing wells collected in the same field. Additionally, persulfate breaker samples as well as anhydrite and pyrite from cores were also analyzed. The objectives of this study were to understand the geochemical interactions between formation and fracturing fluids and their consequences in the context of tight gas exploitation. The analysis of this dataset allowed for a comprehensive understanding of the coupled downhole geochemical processes, linked in particular to the action of the oxidative breaker. Flowback fluid chemistries were determined to be the result of mixing of formation brine with the hydraulic fracturing fluids as well as coupled geochemical reactions with the reservoir rock such as dissolution of anhydrite and dolomite; pyrite and organic matter oxidation; and calcite, barite, celestite, iron oxides and possibly calcium sulfate scaling. In particular, excess sulfate in the collected samples was found to be mainly derived from anhydrite dissolution, and not from persulfate breaker or pyrite oxidation. The release of heavy metals from the oxidation activity of the breaker was detectable but concentrations of heavy metals in produced fluids remained below the World Health Organization guidelines for drinking water and are therefore of no concern. This is due in part to the co-precipitation of heavy metals with iron oxides and possibly sulfate minerals.
Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water
Almaraz et al., September 2019
Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water
Nohemi Almaraz, Julia Regnery, Gary F. Vanzin, Stephanie M. Riley, Danika C. Ahoor, Tzahi Y. Cath (2019). Science of The Total Environment, 134202. 10.1016/j.scitotenv.2019.134202
Abstract:
Oil and gas (O&G) production in the United States is expected to grow at a substantial rate over the coming decades. Environmental sustainability related to water consumption during O&G extraction can be addressed through treatment and reuse of water returning to the surface after well completion. Water quality is an important factor in reuse applications, and specific treatment technologies must be utilized to remove different contaminants. Among others, biological active filtration can remove dissolved organic matter as a pre-treatment for surface discharge or to facilitate reuse in such applications as hydraulic fracturing, dust suppression, road stabilization, and crop irrigation. Yet, the formation of byproducts during treatment of O&G wastewater remains a concern when evaluating reuse applications. In this study, we investigated the previously unnoticed biotic formation of iodinated organic compounds (IOCs) such as triiodomethane during biological treatment of O&G wastewater for beneficial reuse. Iodide and several IOCs were quantified in O&G produced water before and after treatment in biological active filters filled with different media types over 13 weeks of operation. While iodide and total IOCs were measured at concentrations <53 mg/L and 147 μg/L, respectively, before biological treatment, total IOCs were measured at concentrations close to 4 mg/L after biological treatment. Triiodomethane was the IOC that was predominantly present. IOC formation had a negative strong correlation (r = −0.7 to −0.8, p < 0.05, n = 9) with iodide concentration in the treated O&G wastewater, indicating that iodide introduced to the biological active filter system was utilized in various reactions, including biologically mediated halogenation of organic matter. Additionally, iodide-oxidizing bacteria augmented in the treated produced water pointed towards potential negative environmental implications when releasing biologically treated halide-rich wastewater effluents to the aquatic environment.
Oil and gas (O&G) production in the United States is expected to grow at a substantial rate over the coming decades. Environmental sustainability related to water consumption during O&G extraction can be addressed through treatment and reuse of water returning to the surface after well completion. Water quality is an important factor in reuse applications, and specific treatment technologies must be utilized to remove different contaminants. Among others, biological active filtration can remove dissolved organic matter as a pre-treatment for surface discharge or to facilitate reuse in such applications as hydraulic fracturing, dust suppression, road stabilization, and crop irrigation. Yet, the formation of byproducts during treatment of O&G wastewater remains a concern when evaluating reuse applications. In this study, we investigated the previously unnoticed biotic formation of iodinated organic compounds (IOCs) such as triiodomethane during biological treatment of O&G wastewater for beneficial reuse. Iodide and several IOCs were quantified in O&G produced water before and after treatment in biological active filters filled with different media types over 13 weeks of operation. While iodide and total IOCs were measured at concentrations <53 mg/L and 147 μg/L, respectively, before biological treatment, total IOCs were measured at concentrations close to 4 mg/L after biological treatment. Triiodomethane was the IOC that was predominantly present. IOC formation had a negative strong correlation (r = −0.7 to −0.8, p < 0.05, n = 9) with iodide concentration in the treated O&G wastewater, indicating that iodide introduced to the biological active filter system was utilized in various reactions, including biologically mediated halogenation of organic matter. Additionally, iodide-oxidizing bacteria augmented in the treated produced water pointed towards potential negative environmental implications when releasing biologically treated halide-rich wastewater effluents to the aquatic environment.
Influence of High Total Dissolved Solids Concentration and Ionic Composition on γ Spectroscopy Radium Measurements of Oil and Gas-Produced Water
Ajemigbitse et al., August 2019
Influence of High Total Dissolved Solids Concentration and Ionic Composition on γ Spectroscopy Radium Measurements of Oil and Gas-Produced Water
Moses A. Ajemigbitse, Travis L. Tasker, Fred S. Cannon, Nathaniel R. Warner (2019). Environmental Science & Technology, . 10.1021/acs.est.9b03035
Abstract:
Radium measurements in high total dissolved solids (TDS) fluids from oil and gas extraction can have unfavorable precision and accuracy, in part because these high-level impurities incur attenuation. γ spectroscopy is often recommended for determining radium activities in these fluids, but even this method can produce a range of reported activities for the same sample. To reduce measurement duration and to maintain or improve accuracy, we propose a method to rapidly assess both 226Ra and 228Ra and to account for the self-attenuation of γ rays in high-TDS oil and gas fluids when they are monitored by a well detector. In this work, comparisons between a NaCl-only and a multi-cation-chloride synthetic brine spiked with known amounts of 226Ra and 228Ra indicated that both the TDS concentration and the type of TDS (i.e., Na only vs Na–Mg–Ba–Ca–Sr) influenced self-attenuation in well-detector γ spectroscopy, thus highlighting the need to correct for this TDS-influenced self-attenuation. Radium activities can be underestimated if the correction is not applied. For instance, 226Ra activities could be ∼40% lower in a sample when measured directly at the 186 keV energy level if the attenuation of the high TDS of the fluid is not considered. We also showed that using a NaCl-only brine to match the matrix of high-TDS oil and gas brines is inadequate to produce accurate measurements, rather, the full set of cations should be included.
Radium measurements in high total dissolved solids (TDS) fluids from oil and gas extraction can have unfavorable precision and accuracy, in part because these high-level impurities incur attenuation. γ spectroscopy is often recommended for determining radium activities in these fluids, but even this method can produce a range of reported activities for the same sample. To reduce measurement duration and to maintain or improve accuracy, we propose a method to rapidly assess both 226Ra and 228Ra and to account for the self-attenuation of γ rays in high-TDS oil and gas fluids when they are monitored by a well detector. In this work, comparisons between a NaCl-only and a multi-cation-chloride synthetic brine spiked with known amounts of 226Ra and 228Ra indicated that both the TDS concentration and the type of TDS (i.e., Na only vs Na–Mg–Ba–Ca–Sr) influenced self-attenuation in well-detector γ spectroscopy, thus highlighting the need to correct for this TDS-influenced self-attenuation. Radium activities can be underestimated if the correction is not applied. For instance, 226Ra activities could be ∼40% lower in a sample when measured directly at the 186 keV energy level if the attenuation of the high TDS of the fluid is not considered. We also showed that using a NaCl-only brine to match the matrix of high-TDS oil and gas brines is inadequate to produce accurate measurements, rather, the full set of cations should be included.
Hydrolysis and degradation of dazomet with pyrite: Implications for persistence in produced waters in the Marcellus Shale
Consolazio et al., July 2019
Hydrolysis and degradation of dazomet with pyrite: Implications for persistence in produced waters in the Marcellus Shale
Nizette Consolazio, Gregory V. Lowry, Athanasios K. Karamalidisa (2019). Applied Geochemistry, 104383. 10.1016/j.apgeochem.2019.104383
Abstract:
Hydraulic fracturing and horizontal drilling in the Marcellus Shale present a novel use of chemical additives at unprecedented volumes. Reuse of produced water has become a popular option in Pennsylvania, complicating our understanding of the fate of chemical additives due to the variability of produced water chemistry. This study investigates the effect of pH, temperature, ionic strength and the presence of pyrite on the kinetics of degradation of dazomet, a commonly-used biocide, under a range of conditions expected during hydraulic fracturing. The results show that the degradation rate of dazomet is highly dependent on many of the variables tested. The hydrolysis is base-catalyzed over the pH range of interest which results in half-lives decreasing from 8.5 h to 3.4 h as the pH is increased from 4.1 to 8.2. Dissolved FeII ions catalyze dazomet degradation kinetics with solutions of 0.8 mM FeII causing degradation rates to increase by 190% over iron-free water. Increasing temperatures from 34 °C to 57 °C quadrupled hydrolysis rates (estimated activation energy of 60 kJ/mol). Reaction with oxygen-exposed pyrite surface led to accelerated degradation of dazomet, but unoxidized pyrite had no effect on the degradation rate of dazomet. The key hydrolysis products of dazomet degradation are formaldehyde and methyl isothiocyanate which are shown to be significantly more toxic than the parent compound. The study points to the need to assess the specific environmental conditions and any toxic by-products in conducting risk assessments for geological applications.
Hydraulic fracturing and horizontal drilling in the Marcellus Shale present a novel use of chemical additives at unprecedented volumes. Reuse of produced water has become a popular option in Pennsylvania, complicating our understanding of the fate of chemical additives due to the variability of produced water chemistry. This study investigates the effect of pH, temperature, ionic strength and the presence of pyrite on the kinetics of degradation of dazomet, a commonly-used biocide, under a range of conditions expected during hydraulic fracturing. The results show that the degradation rate of dazomet is highly dependent on many of the variables tested. The hydrolysis is base-catalyzed over the pH range of interest which results in half-lives decreasing from 8.5 h to 3.4 h as the pH is increased from 4.1 to 8.2. Dissolved FeII ions catalyze dazomet degradation kinetics with solutions of 0.8 mM FeII causing degradation rates to increase by 190% over iron-free water. Increasing temperatures from 34 °C to 57 °C quadrupled hydrolysis rates (estimated activation energy of 60 kJ/mol). Reaction with oxygen-exposed pyrite surface led to accelerated degradation of dazomet, but unoxidized pyrite had no effect on the degradation rate of dazomet. The key hydrolysis products of dazomet degradation are formaldehyde and methyl isothiocyanate which are shown to be significantly more toxic than the parent compound. The study points to the need to assess the specific environmental conditions and any toxic by-products in conducting risk assessments for geological applications.
In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing
Evans et al., June 2019
In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing
Morgan V. Evans, Gordon Getzinger, Jenna L. Luek, Andrea J. Hanson, Molly C. McLaughlin, Jens Blotevogel, Susan A. Welch, Carrie D. Nicora, Samuel O. Purvine, Chengdong Xu, David R. Cole, Thomas H. Darrah, David W. Hoyt, Thomas O. Metz, P. Lee Ferguson, Mary S. Lipton, Michael J. Wilkins, Paula J. Mouser (2019). The ISME Journal, 1. 10.1038/s41396-019-0466-0
Abstract:
In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.
In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.
Shedding light on the effects of hydraulic fracturing flowback and produced water on phototactic behavior in Daphnia magna
Delompré et al., June 2019
Shedding light on the effects of hydraulic fracturing flowback and produced water on phototactic behavior in Daphnia magna
P. L. M. Delompré, T. A. Blewett, G. G. Goss, C. N. Glover (2019). Ecotoxicology and Environmental Safety, 315-323. 10.1016/j.ecoenv.2019.03.006
Abstract:
The effluent produced during hydraulic fracturing (i.e. flowback and produced water; FPW), is a complex hyper-saline solution that is known to negatively impact the survival and the fitness of the water flea Daphnia magna, but to date effects on behavior are unstudied. In the current study, the effects of FPW on phototactic behavior of D. magna were examined. Exposure of naïve animals to FPW resulted in a dose-dependent increase in the speed of appearance of daphnids in the illuminated zone of the test apparatus (i.e. a faster positive phototaxis response). A similar dose-dependent response was observed in a test solution where the salt content of FPW was recreated in the absence of other components, suggesting that the effect was largely driven by salinity. The effect of FPW was significant when the raw FPW sample was diluted to 20% of its initial strength, while the effect of salt-matched solution was significant at a 10% dilution. A distinct effect was observed following FPW pre-exposure. After a 24 h pre-exposure to 1.5% FPW, Daphnia displayed a significantly inhibited positive phototaxis response when examined in control water, relative to control animals that were not pre-exposed to FPW. This effect was not observed in salinity pre-exposed animals, however these daphnids displayed a significantly reduced phototactic response when tested in saline waters, indicating a loss of the positive phototaxis seen in naïve organisms. These data indicate that FPW can induce perturbations in the behavior of aquatic invertebrates, an effect that may influence processes such as feeding and predation rates.
The effluent produced during hydraulic fracturing (i.e. flowback and produced water; FPW), is a complex hyper-saline solution that is known to negatively impact the survival and the fitness of the water flea Daphnia magna, but to date effects on behavior are unstudied. In the current study, the effects of FPW on phototactic behavior of D. magna were examined. Exposure of naïve animals to FPW resulted in a dose-dependent increase in the speed of appearance of daphnids in the illuminated zone of the test apparatus (i.e. a faster positive phototaxis response). A similar dose-dependent response was observed in a test solution where the salt content of FPW was recreated in the absence of other components, suggesting that the effect was largely driven by salinity. The effect of FPW was significant when the raw FPW sample was diluted to 20% of its initial strength, while the effect of salt-matched solution was significant at a 10% dilution. A distinct effect was observed following FPW pre-exposure. After a 24 h pre-exposure to 1.5% FPW, Daphnia displayed a significantly inhibited positive phototaxis response when examined in control water, relative to control animals that were not pre-exposed to FPW. This effect was not observed in salinity pre-exposed animals, however these daphnids displayed a significantly reduced phototactic response when tested in saline waters, indicating a loss of the positive phototaxis seen in naïve organisms. These data indicate that FPW can induce perturbations in the behavior of aquatic invertebrates, an effect that may influence processes such as feeding and predation rates.
Formation of disinfection by-products under influence of shale gas produced water
Huang et al., January 2019
Formation of disinfection by-products under influence of shale gas produced water
Kuan Z. Huang, Yuefeng F. Xie, Hao L. Tang (2019). Science of The Total Environment, 744-751. 10.1016/j.scitotenv.2018.08.055
Abstract:
Accidental spills and surface discharges of shale gas produced water could contaminate water resources and generate health concerns. The study explored the formation and speciation of disinfection by-products (DBPs) during chlorination of natural waters under the influence of shale gas produced water. Results showed the presence of produced water as low as 0.005% changed the DBP profile measurably. A shift to a more bromine substitution direction for the formation of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles was illustrated by exploring the individual DBP species levels, bromine substitution factors, and DBP species fractions, and the effect was attributable to the introduction of bromide from produced water. The ratio of dichloroacetic and trichloroacetic acids also increased, which was likely affected by different bromination degrees at elevated bromide concentrations. Increasing blend ratios of produced water enhanced the formation of DBPs, especially the brominated species, while such negative effects could be alleviated by pre-treating the produced water with ozone/air stripping to remove bromide. The study advances understandings about the impacts of produced water spills or surface discharges regarding potential violation of Stage 2 DBP rules at drinking water treatment facilities.
Accidental spills and surface discharges of shale gas produced water could contaminate water resources and generate health concerns. The study explored the formation and speciation of disinfection by-products (DBPs) during chlorination of natural waters under the influence of shale gas produced water. Results showed the presence of produced water as low as 0.005% changed the DBP profile measurably. A shift to a more bromine substitution direction for the formation of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles was illustrated by exploring the individual DBP species levels, bromine substitution factors, and DBP species fractions, and the effect was attributable to the introduction of bromide from produced water. The ratio of dichloroacetic and trichloroacetic acids also increased, which was likely affected by different bromination degrees at elevated bromide concentrations. Increasing blend ratios of produced water enhanced the formation of DBPs, especially the brominated species, while such negative effects could be alleviated by pre-treating the produced water with ozone/air stripping to remove bromide. The study advances understandings about the impacts of produced water spills or surface discharges regarding potential violation of Stage 2 DBP rules at drinking water treatment facilities.
Assessment of impacts of diphenyl phosphate on groundwater and near-surface environments: Sorption and toxicity
Funk et al., January 2019
Assessment of impacts of diphenyl phosphate on groundwater and near-surface environments: Sorption and toxicity
Sean P. Funk, Lisa Duffin, Yuhe He, Craig McMullen, Chenxing Sun, Nicholas Utting, Jonathan W. Martin, Greg G. Goss, Daniel S. Alessi (2019). Journal of Contaminant Hydrology, . 10.1016/j.jconhyd.2019.01.002
Abstract:
Wastewater recovered from hydraulic fracturing is referred to as flowback and produced water (FPW), and is often saline, contains numerous organic and inorganic constituents, and may pose threats to groundwater resources. Hundreds of spills of FPW have been reported to the Alberta Energy Regulator each year. Recently, samples of FPW derived from hydraulic fracturing of the Duvernay Formation, AB, were found to contain a previously unidentified class of aryl phosphates, including diphenyl phosphate (DPP), triphenyl phosphate (TPP), and others. Aryl phosphates are also used in a variety of other industries and their constituents can be found in flame retardants, plasticizers, lubricants, hydraulic fluids, and oxidizers. Many of these aryl phosphates break down into DPP. Therefore, it is important to determine the environmental fate and potential impact of DPP if spilled in the near-surface, as DPP is an emerging contaminant in soil and groundwater systems. This study was aimed at determining 1) the sorption behavior of DPP onto various surficial sediments collected within the Fox Creek, AB region, and 2) the toxicity of DPP toward aquatic ecosystems. We report that the sorption of DPP onto both clay-rich soils and sandy sediment was low compared to that of other aryl phosphates, with an average log KOC value of 2.30 ± 0.42 (1σ). Therefore, the transport of DPP in groundwater would be rapid due to its low degree of sorption on surficial materials. We also determined the acute 96 h-LC50 of DPP on zebrafish embryos to be 50.0 ± 7.1 mg/L. Su et al. (2014) studied the toxic effects of DPP and TPP on chicken embryonic hepatocytes and found that DPP had less cytotoxic effects than TPP but altered more gene transcripts. From the results our study, we infer that DPP may pose an environmental risk to aquatic ecosystems if released into the environment.
Wastewater recovered from hydraulic fracturing is referred to as flowback and produced water (FPW), and is often saline, contains numerous organic and inorganic constituents, and may pose threats to groundwater resources. Hundreds of spills of FPW have been reported to the Alberta Energy Regulator each year. Recently, samples of FPW derived from hydraulic fracturing of the Duvernay Formation, AB, were found to contain a previously unidentified class of aryl phosphates, including diphenyl phosphate (DPP), triphenyl phosphate (TPP), and others. Aryl phosphates are also used in a variety of other industries and their constituents can be found in flame retardants, plasticizers, lubricants, hydraulic fluids, and oxidizers. Many of these aryl phosphates break down into DPP. Therefore, it is important to determine the environmental fate and potential impact of DPP if spilled in the near-surface, as DPP is an emerging contaminant in soil and groundwater systems. This study was aimed at determining 1) the sorption behavior of DPP onto various surficial sediments collected within the Fox Creek, AB region, and 2) the toxicity of DPP toward aquatic ecosystems. We report that the sorption of DPP onto both clay-rich soils and sandy sediment was low compared to that of other aryl phosphates, with an average log KOC value of 2.30 ± 0.42 (1σ). Therefore, the transport of DPP in groundwater would be rapid due to its low degree of sorption on surficial materials. We also determined the acute 96 h-LC50 of DPP on zebrafish embryos to be 50.0 ± 7.1 mg/L. Su et al. (2014) studied the toxic effects of DPP and TPP on chicken embryonic hepatocytes and found that DPP had less cytotoxic effects than TPP but altered more gene transcripts. From the results our study, we infer that DPP may pose an environmental risk to aquatic ecosystems if released into the environment.
Unconventional Oil and Gas Energy Systems: An Unidentified Hotspot of Antimicrobial Resistance
Campa et al., November 2024
Unconventional Oil and Gas Energy Systems: An Unidentified Hotspot of Antimicrobial Resistance
Maria Fernanda Campa, Amy K. Wolfe, Stephen M. Techtmann, Ann-Marie Harik, Terry C. Hazen (2024). Frontiers in Microbiology, . 10.3389/fmicb.2019.02392
Abstract:
Biocides used in unconventional oil and gas (UOG) practices, such as hydraulic fracturing, control microbial growth. Unwanted microbial growth can cause gas souring, pipeline clogging, and microbial-induced corrosion of equipment and transportation pipes. However, optimizing biocide use has not been a priority. Moreover, biocide efficacy has been questioned because microbial surveys show an active microbial community in hydraulic fracturing produced and flowback water. Hydraulic fracturing produced and flowback water increases risks to surface aquifers and rivers/lakes near the UOG operations compared with conventional oil and gas operations. While some biocides and biocide degradation products have been highlighted as chemicals of concern because of their toxicity to humans and the environment, the selective antimicrobial pressure they cause has not been considered seriously. This perspective article aims to promote research to determine if antimicrobial pressure in these systems is cause for concern. UOG practices could potentially create antimicrobial resistance hotspots under-appreciated in the literature, practice, and regulation arena, hotspots that should not be ignored. The article is distinctive in discussing antimicrobial resistance risks associated with UOG biocides from a biological risk, not a chemical toxicology, perspective. We outline potential risks and highlight important knowledge gaps that need to be addressed to properly incorporate antimicrobial resistance emergence and selection into UOG environmental and health risk assessments.
Biocides used in unconventional oil and gas (UOG) practices, such as hydraulic fracturing, control microbial growth. Unwanted microbial growth can cause gas souring, pipeline clogging, and microbial-induced corrosion of equipment and transportation pipes. However, optimizing biocide use has not been a priority. Moreover, biocide efficacy has been questioned because microbial surveys show an active microbial community in hydraulic fracturing produced and flowback water. Hydraulic fracturing produced and flowback water increases risks to surface aquifers and rivers/lakes near the UOG operations compared with conventional oil and gas operations. While some biocides and biocide degradation products have been highlighted as chemicals of concern because of their toxicity to humans and the environment, the selective antimicrobial pressure they cause has not been considered seriously. This perspective article aims to promote research to determine if antimicrobial pressure in these systems is cause for concern. UOG practices could potentially create antimicrobial resistance hotspots under-appreciated in the literature, practice, and regulation arena, hotspots that should not be ignored. The article is distinctive in discussing antimicrobial resistance risks associated with UOG biocides from a biological risk, not a chemical toxicology, perspective. We outline potential risks and highlight important knowledge gaps that need to be addressed to properly incorporate antimicrobial resistance emergence and selection into UOG environmental and health risk assessments.
Simulation of a hydraulic fracturing wastewater surface spill on agricultural soil
Oetjen et al., December 2018
Simulation of a hydraulic fracturing wastewater surface spill on agricultural soil
Karl Oetjen, Jens Blotevogel, Thomas Borch, James F. Ranville, Christopher P. Higgins (2018). Science of The Total Environment, 229-234. 10.1016/j.scitotenv.2018.07.043
Abstract:
Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.
Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.
Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver–Julesburg Basin
Hull et al., December 2018
Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver–Julesburg Basin
Natalie M. Hull, James S. Rosenblum, Charles E. Robertson, J. Kirk Harris, Karl G. Linden (2018). Science of The Total Environment, 183-192. 10.1016/j.scitotenv.2018.06.067
Abstract:
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Hydraulic fracturing flowback and produced water (FPW) samples were analyzed for toxicity and microbiome characterization over 220 days for a horizontally drilled well in the Denver-Julesberg (DJ) Basin in Colorado. Cytotoxicity, mutagenicity, and estrogenicity of FPW were measured via the BioLuminescence Inhibition Assay (BLIA), Ames II mutagenicity assay (AMES), and Yeast Estrogen Screen (YES). Raw FPW stimulated bacteria in BLIA, but were cytotoxic to yeast in YES. Filtered FPW stimulated cell growth in both BLIA and YES. Concentrating 25× by solid phase extraction (SPE) revealed significant toxicity throughout well production by BLIA, toxicity during the first 55 days of flowback by YES, and mutagenicity by AMES. The selective pressures of fracturing conditions (including toxicity) affected bacterial and archaeal communities, which were characterized by 16S rRNA gene V4V5 region sequencing. Conditions selected for thermophilic, anaerobic, halophilic bacteria and methanogenic archaea from the groundwater used for fracturing fluid, and from the native shale community. Trends in toxicity echoed the microbial community, which indicated distinct stages of early flowback water, a transition stage, and produced water. Biota in another sampled DJ Basin horizontal well resembled similarly aged samples from this well. However, microbial signatures were unique compared to samples from DJ Basin vertical wells, and wells from other basins. These data can inform treatability, reuse, and management decisions specific to the DJ Basin to minimize adverse environmental health and well production outcomes.
Hydraulic Fracturing Fluid Compositions Induce Differential Enrichment of Soil Bacterial Communities
Lozano et al., December 2018
Hydraulic Fracturing Fluid Compositions Induce Differential Enrichment of Soil Bacterial Communities
Tania M. Lozano, Aubrey Lynn McCutchan, Mark James Krzmarzick (2018). Environmental Engineering Science, . 10.1089/ees.2018.0271
Abstract:
Hydraulic fracturing has become a well-established and widespread technology for the extraction of oil and natural gas. Hydraulic fracturing fluids (HFFs) are widely varied and contain many chemicals that are toxic to human and ecological health. HFFs are often spilled on surface soils where their fate and transport is uncertain. In this study, six representative mixtures of HFFs were incubated with a surface soil in bench-scale microcosms, and the microbial community was analyzed over 78 days. The chemical oxygen demand decreased over time, although a significant recalcitrant fraction was found for four of the six amended fluids. With Illumina MiSeq sequencing of a 16S ribosomal RNA (rRNA) gene amplification and follow-through quantitative polymerase chain reaction (qPCR) assays, 24 bacterial taxa closely related to known species were identified to be enriched by at least one of the representative HFFs. These taxa are mostly closely related to well-known xenobiotic degraders, however, the composition of the enrichment was highly unique for each representative HFF. The results indicate that the complex mixtures of biocides and other components elicit unique bacterial community responses in the same soil, thus suggesting that the bioremediation pathways of HFF constituents in soils may differ based on exact HFF composition.
Hydraulic fracturing has become a well-established and widespread technology for the extraction of oil and natural gas. Hydraulic fracturing fluids (HFFs) are widely varied and contain many chemicals that are toxic to human and ecological health. HFFs are often spilled on surface soils where their fate and transport is uncertain. In this study, six representative mixtures of HFFs were incubated with a surface soil in bench-scale microcosms, and the microbial community was analyzed over 78 days. The chemical oxygen demand decreased over time, although a significant recalcitrant fraction was found for four of the six amended fluids. With Illumina MiSeq sequencing of a 16S ribosomal RNA (rRNA) gene amplification and follow-through quantitative polymerase chain reaction (qPCR) assays, 24 bacterial taxa closely related to known species were identified to be enriched by at least one of the representative HFFs. These taxa are mostly closely related to well-known xenobiotic degraders, however, the composition of the enrichment was highly unique for each representative HFF. The results indicate that the complex mixtures of biocides and other components elicit unique bacterial community responses in the same soil, thus suggesting that the bioremediation pathways of HFF constituents in soils may differ based on exact HFF composition.
Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management
McDevitt et al., November 2018
Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management
Bonnie McDevitt, Molly McLaughlin, Charles A. Cravotta, Moses A. Ajemigbitse, Katherine J. Van Sice, Jens Blotevogel, Thomas Borch, Nathaniel R. Warner (2018). Environmental Science: Processes & Impacts, . 10.1039/C8EM00336J
Abstract:
In the western U.S., produced water from oil and gas wells discharged to surface water augments downstream supplies used for irrigation and livestock watering. Here we investigate six permitted discharges on three neighboring tributary systems in Wyoming. During 2013–16, we evaluated radium activities of the permitted discharges and the potential for radium accumulation in associated stream sediments. Radium activities of the sediments at the points of discharge ranged from approximately 200–3600 Bq kg−1 with elevated activities above the background of 74 Bq kg−1 over 30 km downstream of one permitted discharge. Sediment as deep as 30 cm near the point of discharge had radium activities elevated above background. X-ray diffraction and targeted sequential extraction of radium in sediments indicate that radium is likely coprecipitated with carbonate and, to a lesser extent, sulfate minerals. PHREEQC modeling predicts radium coprecipitation with aragonite and barite, but over-estimates the latter compared to observations of downstream sediment, where carbonate predominates. Mass-balance calculations indicate over 3 billion Bq of radium activity (226Ra + 228Ra) is discharged each year from five of the discharges, combined, with only 5 percent of the annual load retained in stream sediments within 100 m of the effluent discharges; the remaining 95 percent of the radium is transported farther downstream as sediment-associated and aqueous species.
In the western U.S., produced water from oil and gas wells discharged to surface water augments downstream supplies used for irrigation and livestock watering. Here we investigate six permitted discharges on three neighboring tributary systems in Wyoming. During 2013–16, we evaluated radium activities of the permitted discharges and the potential for radium accumulation in associated stream sediments. Radium activities of the sediments at the points of discharge ranged from approximately 200–3600 Bq kg−1 with elevated activities above the background of 74 Bq kg−1 over 30 km downstream of one permitted discharge. Sediment as deep as 30 cm near the point of discharge had radium activities elevated above background. X-ray diffraction and targeted sequential extraction of radium in sediments indicate that radium is likely coprecipitated with carbonate and, to a lesser extent, sulfate minerals. PHREEQC modeling predicts radium coprecipitation with aragonite and barite, but over-estimates the latter compared to observations of downstream sediment, where carbonate predominates. Mass-balance calculations indicate over 3 billion Bq of radium activity (226Ra + 228Ra) is discharged each year from five of the discharges, combined, with only 5 percent of the annual load retained in stream sediments within 100 m of the effluent discharges; the remaining 95 percent of the radium is transported farther downstream as sediment-associated and aqueous species.
Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater
Rogers et al., September 2018
Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater
Jessica D. Rogers, E. Michael Thurman, Imma Ferrer, James Rosenblum, Morgan V. Evans, Paula Mouser, Joseph Ryan (2018). Environmental Science: Processes & Impacts, . 10.1039/C8EM00291F
Abstract:
Polyethylene glycols (PEG) and polypropylene glycols (PPG) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically-fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver Julesburg Basin wells at early and late production. High resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half lives were more rapid for PEG (<0.4-1.1 d) compared to PPG (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight to the differences between degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Polyethylene glycols (PEG) and polypropylene glycols (PPG) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically-fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver Julesburg Basin wells at early and late production. High resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half lives were more rapid for PEG (<0.4-1.1 d) compared to PPG (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight to the differences between degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Iodinated disinfection byproducts: Formation and concerns
Cristina Postigo and Bozo Zonja, September 2018
Iodinated disinfection byproducts: Formation and concerns
Cristina Postigo and Bozo Zonja (2018). Current Opinion in Environmental Science & Health, . 10.1016/j.coesh.2018.08.006
Abstract:
The list of iodinated disinfection byproducts (iodo-DBPs) includes some of the most genotoxic and cytotoxic DBPs discovered to date. Therefore, human exposure should be minimized by reducing their presence in drinking water. This manuscript reviews the main iodo-DBP formation pathways during water disinfection, with focus on the advances reported in the last two years. We discuss the effect of iodine sources other than iodine salts, e.g., iodinated contrast media and iodate, on iodo-DBP formation. In addition, we review the anthropogenic activities (like oil and gas extraction, dairy industry, seawater desalination or advanced oxidation treatments with persulfate) that may release iodo-DBPs to the aquatic environment or increase the potential of source waters to generate these compounds when disinfected.
The list of iodinated disinfection byproducts (iodo-DBPs) includes some of the most genotoxic and cytotoxic DBPs discovered to date. Therefore, human exposure should be minimized by reducing their presence in drinking water. This manuscript reviews the main iodo-DBP formation pathways during water disinfection, with focus on the advances reported in the last two years. We discuss the effect of iodine sources other than iodine salts, e.g., iodinated contrast media and iodate, on iodo-DBP formation. In addition, we review the anthropogenic activities (like oil and gas extraction, dairy industry, seawater desalination or advanced oxidation treatments with persulfate) that may release iodo-DBPs to the aquatic environment or increase the potential of source waters to generate these compounds when disinfected.
SHALE KEROGEN – HYDRAULIC FRACTURING FLUID INTERACTIONS AND CONTAMINANT RELEASE
Dustin et al., August 2018
SHALE KEROGEN – HYDRAULIC FRACTURING FLUID INTERACTIONS AND CONTAMINANT RELEASE
Megan Dustin, John R. Bargar, Adam D. Jew, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Jr., Gordon E. Brown, Kate Maher (2018). Energy & Fuels, . 10.1021/acs.energyfuels.8b01037
Abstract:
The recent increase in unconventional oil and gas exploration and production has prompted a large amount of research on hydraulic fracturing, but the majority of chemical reactions between shale minerals and organic matter with fracturing fluids are not well understood. Organic matter, primarily in the form of kerogen, dominates the transport pathways for oil and gas; thus any alteration of kerogen (both physical and chemical properties) upon exposure to fracturing fluid may impact hydrocarbon extraction. In addition, kerogen is enriched in metals, making it a potential source of heavy metal contaminants to produced waters. In this study, we reacted two different kerogen isolates of contrasting type and maturity (derived from Green River and Marcellus shales) with a synthetic hydraulic fracturing fluid for two weeks in order to determine the effect of fracturing fluids on both shale organic matter and closely associated minerals. ATR-FTIR results show that the functional group compositions of the kerogen isolates were in fact altered, although by apparently different mechanisms. In particular, hydrophobic functional groups decreased in the Marcellus kerogen, which suggests the wettability of shale organic matter may be susceptible to alteration during hydraulic fracturing operations. About 1% of organic carbon in the more immature and Type I Green River kerogen isolate was solubilized when it was exposed to fracturing fluid, and the released organic compounds significantly impacted Fe oxidation. Based on the alteration observed in both kerogen isolates, it should not be assumed that kerogenic pores are chemically inert over the timeframe of hydraulic fracturing operations. Shifts in functional group composition and loss of hydrophobicity have the potential to degrade transport and storage parameters such as wettability, which could alter hydrocarbon and fracturing fluid transport through shale. Additionally, reaction of Green River and Marcellus kerogen isolates with low pH solutions (full fracturing fluid, which contains hydrochloric acid, or pH 2 water) mobilized potential trace metal(loid) contaminants, primarily S, Fe, Co, Ni, Zn, and Pb. The source of trace metal(loid)s varied between the two kerogen isolates, with metals in the Marcellus shale largely sourced from pyrite impurities, whereas metals in the Green River shale were sourced from a combination of accessory minerals and kerogen.
The recent increase in unconventional oil and gas exploration and production has prompted a large amount of research on hydraulic fracturing, but the majority of chemical reactions between shale minerals and organic matter with fracturing fluids are not well understood. Organic matter, primarily in the form of kerogen, dominates the transport pathways for oil and gas; thus any alteration of kerogen (both physical and chemical properties) upon exposure to fracturing fluid may impact hydrocarbon extraction. In addition, kerogen is enriched in metals, making it a potential source of heavy metal contaminants to produced waters. In this study, we reacted two different kerogen isolates of contrasting type and maturity (derived from Green River and Marcellus shales) with a synthetic hydraulic fracturing fluid for two weeks in order to determine the effect of fracturing fluids on both shale organic matter and closely associated minerals. ATR-FTIR results show that the functional group compositions of the kerogen isolates were in fact altered, although by apparently different mechanisms. In particular, hydrophobic functional groups decreased in the Marcellus kerogen, which suggests the wettability of shale organic matter may be susceptible to alteration during hydraulic fracturing operations. About 1% of organic carbon in the more immature and Type I Green River kerogen isolate was solubilized when it was exposed to fracturing fluid, and the released organic compounds significantly impacted Fe oxidation. Based on the alteration observed in both kerogen isolates, it should not be assumed that kerogenic pores are chemically inert over the timeframe of hydraulic fracturing operations. Shifts in functional group composition and loss of hydrophobicity have the potential to degrade transport and storage parameters such as wettability, which could alter hydrocarbon and fracturing fluid transport through shale. Additionally, reaction of Green River and Marcellus kerogen isolates with low pH solutions (full fracturing fluid, which contains hydrochloric acid, or pH 2 water) mobilized potential trace metal(loid) contaminants, primarily S, Fe, Co, Ni, Zn, and Pb. The source of trace metal(loid)s varied between the two kerogen isolates, with metals in the Marcellus shale largely sourced from pyrite impurities, whereas metals in the Green River shale were sourced from a combination of accessory minerals and kerogen.
Impacts of shale gas production wastewater on disinfection byproduct formation: an investigation from a non-bromide perspective
Huang et al., July 2018
Impacts of shale gas production wastewater on disinfection byproduct formation: an investigation from a non-bromide perspective
Kuan Z. Huang, Hao L. Tang, Yuefeng F. Xie (2018). Water Research, . 10.1016/j.watres.2018.07.048
Abstract:
The rapid rise of shale gas development has triggered environmental and human health concerns due to its impacts on water resources, especially on disinfection byproduct (DBP) formation upon chlorination. Despite the recently reported results on bromide, the effects of non-bromide ions in production wastewater at extremely high levels are vaguely defined. In this study, we investigated the effects of production wastewater, with bromide and non-bromide species, on the formation of DBPs when production wastewater was spiked into surface waters at various percentages. Results showed that the introduction of debrominated production wastewater led to increased formation of some chlorinated DBP species in selected surface water and wastewater. As the spiking percentage of debrominated production wastewater increased, the chlorinated DBP species increased. The contributions of individual cations to DBP formation followed a sequence of magnesium > calcium > barium at 0.10% spiking percentage due to the different catalytic effects of their chelates with organic precursors. The study of anions suggested that the discharge of treated production wastewater containing elevated sulfate may further enhance DBP formation. The significance of this study lies in the fact that in addition to bromide concerns from production wastewater, non-bromide species also contributed to DBP formation. The gas production wastewater management decision should consider the negative impacts from both bromide and non-bromide species to better protect the receiving water resources.
The rapid rise of shale gas development has triggered environmental and human health concerns due to its impacts on water resources, especially on disinfection byproduct (DBP) formation upon chlorination. Despite the recently reported results on bromide, the effects of non-bromide ions in production wastewater at extremely high levels are vaguely defined. In this study, we investigated the effects of production wastewater, with bromide and non-bromide species, on the formation of DBPs when production wastewater was spiked into surface waters at various percentages. Results showed that the introduction of debrominated production wastewater led to increased formation of some chlorinated DBP species in selected surface water and wastewater. As the spiking percentage of debrominated production wastewater increased, the chlorinated DBP species increased. The contributions of individual cations to DBP formation followed a sequence of magnesium > calcium > barium at 0.10% spiking percentage due to the different catalytic effects of their chelates with organic precursors. The study of anions suggested that the discharge of treated production wastewater containing elevated sulfate may further enhance DBP formation. The significance of this study lies in the fact that in addition to bromide concerns from production wastewater, non-bromide species also contributed to DBP formation. The gas production wastewater management decision should consider the negative impacts from both bromide and non-bromide species to better protect the receiving water resources.
Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water
William R. Rish and Edward J. Pfau, April 2018
Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water
William R. Rish and Edward J. Pfau (2018). Risk Analysis, 724-754. 10.1111/risa.12884
Abstract:
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10(-10) and 10(-6) (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10(-10) and 10(-6) (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).
Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater
Lauer et al., January 2018
Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater
Nancy E. Lauer, Nathaniel R. Warner, Avner Vengosh (2018). Environmental Science & Technology, . 10.1021/acs.est.7b04952
Abstract:
In Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for release to surface waters after some treatment by centralized waste treatment (CWT) facilities. While this practice was largely discontinued in 2011 for unconventional Marcellus OGW, it continues for conventional OGW. This study aimed to evaluate the environmental implications of the policy allowing the disposal of conventional OGW. We collected stream sediments from three discharge sites receiving treated OGW between 2014-2017 and measured 228Ra, 226Ra, and their decay products, 228Th and 210Pb, respectively. We consistently found elevated activities of 228Ra and 226Ra in stream sediments in the vicinity of the outfall (total Ra = 90-25,000 Bq/kg) compared to upstream sediments (20-80 Bq/kg). In 2015 and 2017, 228Th/228Ra activity ratios in sediments from two disposal sites were relatively low (0.2-0.7), indicating that a portion of the Ra has accumulated in the sediments in recent (<3) years, when no unconventional Marcellus OGW was reportedly discharged. 228Ra/226Ra activity ratios were also higher than what would be expected solely from disposal of low 228Ra/226Ra Marcellus OGW. Based on these variations, we concluded that recent disposal of treated conventional OGW is the source of high Ra in stream sediments at CWT facility disposal sites. Consequently, policies pertaining to the disposal of only unconventional fluids are not adequate in preventing radioactive contamination in sediments at disposal sites, and the permission to release of treated Ra-rich conventional OGW through CWT facilities should be reconsidered.
In Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for release to surface waters after some treatment by centralized waste treatment (CWT) facilities. While this practice was largely discontinued in 2011 for unconventional Marcellus OGW, it continues for conventional OGW. This study aimed to evaluate the environmental implications of the policy allowing the disposal of conventional OGW. We collected stream sediments from three discharge sites receiving treated OGW between 2014-2017 and measured 228Ra, 226Ra, and their decay products, 228Th and 210Pb, respectively. We consistently found elevated activities of 228Ra and 226Ra in stream sediments in the vicinity of the outfall (total Ra = 90-25,000 Bq/kg) compared to upstream sediments (20-80 Bq/kg). In 2015 and 2017, 228Th/228Ra activity ratios in sediments from two disposal sites were relatively low (0.2-0.7), indicating that a portion of the Ra has accumulated in the sediments in recent (<3) years, when no unconventional Marcellus OGW was reportedly discharged. 228Ra/226Ra activity ratios were also higher than what would be expected solely from disposal of low 228Ra/226Ra Marcellus OGW. Based on these variations, we concluded that recent disposal of treated conventional OGW is the source of high Ra in stream sediments at CWT facility disposal sites. Consequently, policies pertaining to the disposal of only unconventional fluids are not adequate in preventing radioactive contamination in sediments at disposal sites, and the permission to release of treated Ra-rich conventional OGW through CWT facilities should be reconsidered.
Chemical Degradation of Polyacrylamide during Hydraulic Fracturing
Xiong et al., January 2018
Chemical Degradation of Polyacrylamide during Hydraulic Fracturing
Boya Xiong, Zachary Miller, Selina Roman-White, Travis Tasker, Benjamin Farina, Bethany Piechowicz, William D. Burgos, Prachi Joshi, Liang Zhu, Christopher A. Gorski, Andrew L. Zydney, Manish Kumar (2018). Environmental Science & Technology, 327-336. 10.1021/acs.est.7b00792
Abstract:
Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including decisions on strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by 2 orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluids. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-μM hydroxyl radical concentrations. The shale sample adsorbed some PAM (∼30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.
Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including decisions on strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by 2 orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluids. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-μM hydroxyl radical concentrations. The shale sample adsorbed some PAM (∼30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.
Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.
Torres et al., January 1970
Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.
L. Torres, O. P. Yadav, E. Khan (1970). The Science of the total environment, 867-874. 10.1016/j.scitotenv.2018.01.171
Abstract:
Abstract: Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to...
Abstract: Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to...
The potential for spills and leaks of contaminated liquids from shale gas developments
Clancy et al., November 2024
The potential for spills and leaks of contaminated liquids from shale gas developments
S. A. Clancy, F. Worrall, R. J. Davies, J. G. Gluyas (2024). Science of The Total Environment, . 10.1016/j.scitotenv.2018.01.177
Abstract:
Rapid growth of hydraulic fracturing for shale gas within the USA and the possibility of shale developments within Europe has created public concern about the risks of spills and leaks associated with the industry. Reports from the Texas Railroad Commission (1999 to 2015) and the Colorado Oil and Gas Commission (2009 to 2015) were used to examine spill rates from oil and gas well pads. Pollution incident records for England and road transport incident data for the UK were examined as an analogue for potential offsite spills associated with transport for a developing shale industry. The Texas and Colorado spill data shows that the spill rate on the well pads has increased over the recorded time period. The most common spill cause was equipment failure. Within Colorado 33% of the spills recorded were found during well pad remediation and random site inspections. Based on data from the Texas Railroad Commission, a UK shale industry developing well pads with 10 lateral wells would likely experience a spill for every 16 well pads developed. The same well pad development scenario is estimated to require at least 2856 tanker movements over two years per well pad. Considering this tanker movement estimate with incident and spill frequency data from UK milk tankers, a UK shale industry would likely experience an incident on the road for every 12 well pads developed and a road spill for every 19 well pads developed. Consequently, should a UK shale industry be developed it is important that appropriate mitigation strategies are in place to minimise the risk of spills associated with well pad activities and fluid transportation movements.
Rapid growth of hydraulic fracturing for shale gas within the USA and the possibility of shale developments within Europe has created public concern about the risks of spills and leaks associated with the industry. Reports from the Texas Railroad Commission (1999 to 2015) and the Colorado Oil and Gas Commission (2009 to 2015) were used to examine spill rates from oil and gas well pads. Pollution incident records for England and road transport incident data for the UK were examined as an analogue for potential offsite spills associated with transport for a developing shale industry. The Texas and Colorado spill data shows that the spill rate on the well pads has increased over the recorded time period. The most common spill cause was equipment failure. Within Colorado 33% of the spills recorded were found during well pad remediation and random site inspections. Based on data from the Texas Railroad Commission, a UK shale industry developing well pads with 10 lateral wells would likely experience a spill for every 16 well pads developed. The same well pad development scenario is estimated to require at least 2856 tanker movements over two years per well pad. Considering this tanker movement estimate with incident and spill frequency data from UK milk tankers, a UK shale industry would likely experience an incident on the road for every 12 well pads developed and a road spill for every 19 well pads developed. Consequently, should a UK shale industry be developed it is important that appropriate mitigation strategies are in place to minimise the risk of spills associated with well pad activities and fluid transportation movements.
Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3-L1 cells
Kassotis et al., November 2024
Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3-L1 cells
Christopher D. Kassotis, Susan C. Nagel, Heather M. Stapleton (2024). Science of The Total Environment, . 10.1016/j.scitotenv.2018.05.030
Abstract:
Unconventional oil and natural gas (UOG) operations have contributed to a surge in domestic oil and natural gas production in the United States, combining horizontal drilling with hydraulic fracturing to unlock previously inaccessible fossil fuel deposits. >1000 organic chemicals are used in the production process, and wastewater is produced following injection and for the life of the producing well. This wastewater is typically disposed of via injecting into disposal wells for long-term storage, treatment and discharge from wastewater treatment plants, and/or storage in open evaporation pits; however, wastewater spill rates are reported at 2–20% of active well sites across regions, increasing concerns about the environmental impacts of these wastewaters. This study assessed adipogenic activity (both triglyceride accumulation and pre-adipocyte proliferation) for a mixture of 23 commonly used UOG chemicals and a small subset of UOG wastewater-impacted surface water extracts from Colorado and West Virginia, using 3T3-L1 cells and a peroxisome proliferator activated receptor gamma (PPARγ) reporter assay. We report potent and efficacious adipogenic activity induced by both a laboratory-created UOG chemical mixture and UOG-impacted water samples at concentrations below environmental levels. We further report activation of PPARγ at similar concentrations for some samples, suggesting a causative molecular pathway for the observed effects, but not for other adipogenic samples, implicating PPARγ-dependent and independent effects from UOG associated chemicals. Taken together, these results suggest that UOG wastewater has the potential to impact metabolic health at environmentally relevant concentrations.
Unconventional oil and natural gas (UOG) operations have contributed to a surge in domestic oil and natural gas production in the United States, combining horizontal drilling with hydraulic fracturing to unlock previously inaccessible fossil fuel deposits. >1000 organic chemicals are used in the production process, and wastewater is produced following injection and for the life of the producing well. This wastewater is typically disposed of via injecting into disposal wells for long-term storage, treatment and discharge from wastewater treatment plants, and/or storage in open evaporation pits; however, wastewater spill rates are reported at 2–20% of active well sites across regions, increasing concerns about the environmental impacts of these wastewaters. This study assessed adipogenic activity (both triglyceride accumulation and pre-adipocyte proliferation) for a mixture of 23 commonly used UOG chemicals and a small subset of UOG wastewater-impacted surface water extracts from Colorado and West Virginia, using 3T3-L1 cells and a peroxisome proliferator activated receptor gamma (PPARγ) reporter assay. We report potent and efficacious adipogenic activity induced by both a laboratory-created UOG chemical mixture and UOG-impacted water samples at concentrations below environmental levels. We further report activation of PPARγ at similar concentrations for some samples, suggesting a causative molecular pathway for the observed effects, but not for other adipogenic samples, implicating PPARγ-dependent and independent effects from UOG associated chemicals. Taken together, these results suggest that UOG wastewater has the potential to impact metabolic health at environmentally relevant concentrations.
Exploring the hydraulic fracturing parameter space: a novel high-pressure, high-throughput reactor system for investigating subsurface chemical transformations
Andrew J. Sumner and Desiree L. Plata, November 2024
Exploring the hydraulic fracturing parameter space: a novel high-pressure, high-throughput reactor system for investigating subsurface chemical transformations
Andrew J. Sumner and Desiree L. Plata (2024). Environmental Science: Processes & Impacts, . 10.1039/C7EM00470B
Abstract:
Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid
Edwards et al., December 2017
Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid
Ryan W. J. Edwards, Florian Doster, Michael A. Celia, Karl W. Bandilla (2017). Environmental Science & Technology, 13779-13787. 10.1021/acs.est.7b03270
Abstract:
Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the :Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and Show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.
Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the :Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and Show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.
Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms
Heyob et al., December 2017
Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms
Katie M. Heyob, Jens Blotevogel, Michael Brooker, Morgan V. Evans, John J. Lenhart, Justin Wright, Regina Lamendella, Thomas Borch, Paula J. Mouser (2017). Environmental Science & Technology, 13985-13994. 10.1021/acs.est.7b01539
Abstract:
Hydraulic fracturing fluids are injected into shales" to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from :the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.
Hydraulic fracturing fluids are injected into shales" to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from :the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.
Produced Water Surface Spills and the Risk for BTEX and Naphthalene Groundwater Contamination
Shores et al., November 2017
Produced Water Surface Spills and the Risk for BTEX and Naphthalene Groundwater Contamination
Amanda Shores, Melinda Laituri, Greg Butters (2017). Water, Air, & Soil Pollution, 435. 10.1007/s11270-017-3618-8
Abstract:
The widespread use of unconventional drilling involving hydraulic fracturing (“fracking”) has allowed for increased oil-and-gas extraction, produced water generation, and subsequent spills of produced water in Colorado and elsewhere. Produced water contains BTEX (benzene, toluene, ethylbenzene, xylene) and naphthalene, all of which are known to induce varying levels of toxicity upon exposure. When spilled, these contaminants can migrate through the soil and contaminant groundwater. This research modeled the solute transport of BTEX and naphthalene for a range of spill sizes on contrasting soils overlying groundwater at different depths. The results showed that benzene and toluene were expected to reach human health relevant concentration in groundwater because of their high concentrations in produced water, relatively low solid/liquid partition coefficient and low EPA drinking water limits for these contaminants. Peak groundwater concentrations were higher and were reached more rapidly in coarser textured soil. Risk categories of “low,” “medium,” and “high” were established by dividing the EPA drinking water limit for each contaminant into sequential thirds and modeled scenarios were classified into such categories. A quick reference guide was created that allows the user to input specific variables about an area of interest to evaluate that site’s risk of groundwater contamination in the event of a produced water spill. A large fraction of produced water spills occur at hydraulic-fracturing well pads; thus, the results of this research suggest that the surface area selected for a hydraulic-fracturing site should exclude or require extra precaution when considering areas with shallow aquifers and coarsely textured soils.
The widespread use of unconventional drilling involving hydraulic fracturing (“fracking”) has allowed for increased oil-and-gas extraction, produced water generation, and subsequent spills of produced water in Colorado and elsewhere. Produced water contains BTEX (benzene, toluene, ethylbenzene, xylene) and naphthalene, all of which are known to induce varying levels of toxicity upon exposure. When spilled, these contaminants can migrate through the soil and contaminant groundwater. This research modeled the solute transport of BTEX and naphthalene for a range of spill sizes on contrasting soils overlying groundwater at different depths. The results showed that benzene and toluene were expected to reach human health relevant concentration in groundwater because of their high concentrations in produced water, relatively low solid/liquid partition coefficient and low EPA drinking water limits for these contaminants. Peak groundwater concentrations were higher and were reached more rapidly in coarser textured soil. Risk categories of “low,” “medium,” and “high” were established by dividing the EPA drinking water limit for each contaminant into sequential thirds and modeled scenarios were classified into such categories. A quick reference guide was created that allows the user to input specific variables about an area of interest to evaluate that site’s risk of groundwater contamination in the event of a produced water spill. A large fraction of produced water spills occur at hydraulic-fracturing well pads; thus, the results of this research suggest that the surface area selected for a hydraulic-fracturing site should exclude or require extra precaution when considering areas with shallow aquifers and coarsely textured soils.
Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water
Folkerts et al., September 2017
Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water
Erik J. Folkerts, Tamzin A. Blewett, Yuhe He, Greg G. Goss (2017). Environmental Pollution, . 10.1016/j.envpol.2017.09.011
Abstract:
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.