This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Repository for Oil and Gas Energy Research (ROGER)
The Repository for Oil and Gas Energy Research, or ROGER, is a near-exhaustive collection of bibliographic information, abstracts, and links to many of journal articles that pertain to shale and tight gas development. The goal of this project is to create a single repository for unconventional oil and gas-related research as a resource for academic, scientific, and citizen researchers.
ROGER currently includes 2303 studies.
Last updated: November 24, 2024
Search ROGER
Use keywords or categories (e.g., air quality, climate, health) to identify peer-reviewed studies and view study abstracts.
Topic Areas
Ground Gas Monitoring: Implications for Hydraulic Fracturing and CO2 Storage
Teasdale et al., November 2014
Ground Gas Monitoring: Implications for Hydraulic Fracturing and CO2 Storage
Christopher J. Teasdale, Jean A. Hall, John P. Martin, David A. C. Manning (2014). Environmental Science & Technology, 13610-13616. 10.1021/es502528c
Abstract:
Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as Carbon Capture and Storage and hydraulic fracturing ('fracking') affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for timescales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.
Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as Carbon Capture and Storage and hydraulic fracturing ('fracking') affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for timescales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.
Industry experience in deriving updated emission factors to characterize methane emissions for select emission sources in natural gas systems
Ritter et al., November 2014
Industry experience in deriving updated emission factors to characterize methane emissions for select emission sources in natural gas systems
Karin Ritter, Miriam Lev-On, Theresa Shires (2014). Carbon Management, 507-517. 10.1080/20430779.2015.1036752
Abstract:
Natural gas production is rapidly expanding globally using advanced techniques that are opening new areas to exploration and development. New techniques and practices, including those involving hydraulic fracturing, have spurred growth in natural gas based power generation that is credited with reducing greenhouse gas (GHG) emissions with the co-benefit of improved air quality. These new operating practices necessitate a thorough review of existing quantification methods for methane emissions. This paper addresses the wide ranging efforts undertaken by the American Petroleum Institute over the past decade, or more, to provide robust data for characterizing methane emissions from natural gas operations. Industry efforts to characterize emission sources that are unique to natural gas production operations are also described. In order to inform the public debate on natural gas use and its role in mitigating overall GHG emissions this paper includes a comparison of new methane emission factors derived by industry to those used for the US National GHG Inventory.
Natural gas production is rapidly expanding globally using advanced techniques that are opening new areas to exploration and development. New techniques and practices, including those involving hydraulic fracturing, have spurred growth in natural gas based power generation that is credited with reducing greenhouse gas (GHG) emissions with the co-benefit of improved air quality. These new operating practices necessitate a thorough review of existing quantification methods for methane emissions. This paper addresses the wide ranging efforts undertaken by the American Petroleum Institute over the past decade, or more, to provide robust data for characterizing methane emissions from natural gas operations. Industry efforts to characterize emission sources that are unique to natural gas production operations are also described. In order to inform the public debate on natural gas use and its role in mitigating overall GHG emissions this paper includes a comparison of new methane emission factors derived by industry to those used for the US National GHG Inventory.
Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence
Skoumal et al., November 2014
Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence
Robert J. Skoumal, Michael R. Brudzinski, Brian S. Currie, Jonathan Levy (2014). Earth and Planetary Science Letters, 274-280. 10.1016/j.epsl.2014.08.033
Abstract:
A series of earthquakes in 2011 near Youngstown, OH, has been a focal point for discussions of seismicity induced by a nearby wastewater disposal well. Utilizing an efficient waveform template matching procedure, the optimal correlation template to study the Youngstown sequence was identified by varying parameters such as the stations utilized, frequency passband, and seismogram length. A catalog composed of 566 events was identified between January 2011 and February 2014. Double-difference relocation refines seismicity to a similar to 800 m linear streak from the Northstar 1 injection well to the WSW along the same strike as the fault plane of the largest event. Calculated Gutenberg-Richter b-values are consistent with trends observed in other regions with seismicity induced by fluid injection. (C) 2014 Elsevier B.V. All rights reserved.
A series of earthquakes in 2011 near Youngstown, OH, has been a focal point for discussions of seismicity induced by a nearby wastewater disposal well. Utilizing an efficient waveform template matching procedure, the optimal correlation template to study the Youngstown sequence was identified by varying parameters such as the stations utilized, frequency passband, and seismogram length. A catalog composed of 566 events was identified between January 2011 and February 2014. Double-difference relocation refines seismicity to a similar to 800 m linear streak from the Northstar 1 injection well to the WSW along the same strike as the fault plane of the largest event. Calculated Gutenberg-Richter b-values are consistent with trends observed in other regions with seismicity induced by fluid injection. (C) 2014 Elsevier B.V. All rights reserved.
Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK
Rob Westaway and Paul L. Younger, November 2014
Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK
Rob Westaway and Paul L. Younger (2014). Quarterly Journal of Engineering Geology and Hydrogeology, 333-350. 10.1144/qjegh2014-011
Abstract:
The furore that has arisen in the UK over induced microseismicity from 'fracking' for shale gas development, which has resulted in ground vibrations strong enough to be felt, requires the urgent development of an appropriate regulatory framework. We suggest that the existing regulatory limits applicable to quarry blasting (i.e. peak ground velocities (PGV) in the seismic wavefield incident on any residential property of 10 mms(-1) during the working day, 2 mms(-1) at night, and 4.5 mms(-1) at other times) can be readily applied to cover such induced seismicity. Levels of vibration of this order do not constitute a hazard: they are similar in magnitude to the 'nuisance' vibrations that may be caused by activities such as walking on wooden floors, or by large vehicles passing on a road outside a building. Using a simple technique based on analysis of the spectra of seismic S waves, we show that this proposed daytime regulatory limit for PGV is likely to be satisfied directly above the source of a magnitude 3 induced earthquake at a depth of 2.5 km, and illustrate how the proposed limits scale in terms of magnitudes of induced earthquakes at other distances. Previous experience indicates that the length of the fracture networks that are produced by 'fracking' cannot exceed 600 m; the development of a fracture network of this size in one single rupture would correspond to an induced earthquake c. magnitude 3.6. Events of that magnitude would result in PGV above our proposed regulatory limit and might be sufficient to cause minor damage to property, such as cracked plaster; we propose that any such rare occurrences could readily be covered by a system of compensation similar to that used over many decades for damage caused by coal mining. However, it is highly unlikely that future 'fracking' in the UK would cause even this minor damage, because the amount of 'force' applied in 'fracking' tends to be strictly limited by operators: this is because there is an inherent disincentive to fracture sterile overburden, especially where this may contain groundwater that could flood-out the underlying gas-producing zones just developed. For the same reason, seismic monitoring of 'fracking' is routine; the data that it generates could be used directly to police compliance with any regulatory framework. Although inspired by UK conditions and debates, our proposals might also be useful for other regulatory jurisdictions.
The furore that has arisen in the UK over induced microseismicity from 'fracking' for shale gas development, which has resulted in ground vibrations strong enough to be felt, requires the urgent development of an appropriate regulatory framework. We suggest that the existing regulatory limits applicable to quarry blasting (i.e. peak ground velocities (PGV) in the seismic wavefield incident on any residential property of 10 mms(-1) during the working day, 2 mms(-1) at night, and 4.5 mms(-1) at other times) can be readily applied to cover such induced seismicity. Levels of vibration of this order do not constitute a hazard: they are similar in magnitude to the 'nuisance' vibrations that may be caused by activities such as walking on wooden floors, or by large vehicles passing on a road outside a building. Using a simple technique based on analysis of the spectra of seismic S waves, we show that this proposed daytime regulatory limit for PGV is likely to be satisfied directly above the source of a magnitude 3 induced earthquake at a depth of 2.5 km, and illustrate how the proposed limits scale in terms of magnitudes of induced earthquakes at other distances. Previous experience indicates that the length of the fracture networks that are produced by 'fracking' cannot exceed 600 m; the development of a fracture network of this size in one single rupture would correspond to an induced earthquake c. magnitude 3.6. Events of that magnitude would result in PGV above our proposed regulatory limit and might be sufficient to cause minor damage to property, such as cracked plaster; we propose that any such rare occurrences could readily be covered by a system of compensation similar to that used over many decades for damage caused by coal mining. However, it is highly unlikely that future 'fracking' in the UK would cause even this minor damage, because the amount of 'force' applied in 'fracking' tends to be strictly limited by operators: this is because there is an inherent disincentive to fracture sterile overburden, especially where this may contain groundwater that could flood-out the underlying gas-producing zones just developed. For the same reason, seismic monitoring of 'fracking' is routine; the data that it generates could be used directly to police compliance with any regulatory framework. Although inspired by UK conditions and debates, our proposals might also be useful for other regulatory jurisdictions.
Fracking: Boon or Ruin
Michael J. Mcguire, November 2014
Fracking: Boon or Ruin
Michael J. Mcguire (2014). Journal American Water Works Association, 2-2. 10.1144/qjegh2014-011
Abstract:
Regulation of hydraulic fracturing operations at the federal and state levels
Patricia Carroll Hertzler, November 2014
Regulation of hydraulic fracturing operations at the federal and state levels
Patricia Carroll Hertzler (2014). Journal American Water Works Association, 58-65. 10.5942/jawwa.2014.106.0156
Abstract:
Despite the abundance of federal and state legislation intended to regulate hydraulic fracturing, numerous studies indicate that there are gaps in these efforts.
Despite the abundance of federal and state legislation intended to regulate hydraulic fracturing, numerous studies indicate that there are gaps in these efforts.
Direct and indirect challenges for water quality from the hydraulic fracturing industry
Sharon C. Long, November 2014
Direct and indirect challenges for water quality from the hydraulic fracturing industry
Sharon C. Long (2014). Journal American Water Works Association, 53-57. 10.5942/jawwa.2014.106.0155
Abstract:
Assessing worker exposure to inhaled volatile organic compounds from Marcellus Shale flowback pits
Bloomdahl et al., November 2014
Assessing worker exposure to inhaled volatile organic compounds from Marcellus Shale flowback pits
Ry Bloomdahl, Noura Abualfaraj, Mira Olson, Patrick L. Gurian (2014). Journal of Natural Gas Science and Engineering, 348-356. 10.1016/j.jngse.2014.08.018
Abstract:
Natural gas drilling sites employing hydraulic fracturing present a potential source of inhalation exposure to volatile organic compounds (VOCs) via the use of flowback pits. These open-air pits are used as a means of storing flowback water, a waste product of hydraulic fracturing, and represent an understudied source of VOC exposure for workers. The objective of this study was to assess this worker exposure and the resulting health risks for 12 VOCs present in flowback water stored in such an open reservoir on a drilling site. Flowback pit VOC mean, 2.5 percentile, and 97.5 percentile concentrations were used to model aqueous phase concentrations, and two models of volatilization were applied to estimate flux to the gas phase. A mass-balance approach was used to estimate gas phase concentrations that were, in turn, used to estimate worker exposure. A literature review was performed to determine VOC health effects, exposure limits, and worker protection methods. Neither model demonstrated an increased risk of adverse effects due to subchronic exposure at the 2.5 percentile and mean concentration values for the 12 VOCs as indicated by hazard quotients, hazard indices, or excess lifetime cancer risks; however, 97.5 percentile hazard indices approached 1 in one model and did demonstrate unacceptable risks in the evaluation of limitations. Either model may apply to worker health assessment depending upon industry practice; however, differing weather conditions, industry practice, and the small number of VOCs evaluated necessitate further research regarding worker risks and health effects. (C) 2014 Elsevier B.V. All rights reserved.
Natural gas drilling sites employing hydraulic fracturing present a potential source of inhalation exposure to volatile organic compounds (VOCs) via the use of flowback pits. These open-air pits are used as a means of storing flowback water, a waste product of hydraulic fracturing, and represent an understudied source of VOC exposure for workers. The objective of this study was to assess this worker exposure and the resulting health risks for 12 VOCs present in flowback water stored in such an open reservoir on a drilling site. Flowback pit VOC mean, 2.5 percentile, and 97.5 percentile concentrations were used to model aqueous phase concentrations, and two models of volatilization were applied to estimate flux to the gas phase. A mass-balance approach was used to estimate gas phase concentrations that were, in turn, used to estimate worker exposure. A literature review was performed to determine VOC health effects, exposure limits, and worker protection methods. Neither model demonstrated an increased risk of adverse effects due to subchronic exposure at the 2.5 percentile and mean concentration values for the 12 VOCs as indicated by hazard quotients, hazard indices, or excess lifetime cancer risks; however, 97.5 percentile hazard indices approached 1 in one model and did demonstrate unacceptable risks in the evaluation of limitations. Either model may apply to worker health assessment depending upon industry practice; however, differing weather conditions, industry practice, and the small number of VOCs evaluated necessitate further research regarding worker risks and health effects. (C) 2014 Elsevier B.V. All rights reserved.
Influence of softening sequencing on electrocoagulation treatment of produced water
Esmaeilirad et al., November 2014
Influence of softening sequencing on electrocoagulation treatment of produced water
Nasim Esmaeilirad, Ken Carlson, Pinar Omur Ozbek (2014). Journal of Hazardous Materials, 721-729. 10.1016/j.jhazmat.2014.10.046
Abstract:
Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process.
Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process.
Traumatic Injuries Incidental to Hydraulic Well Fracturing: A Case Series
Williams et al., November 2014
Traumatic Injuries Incidental to Hydraulic Well Fracturing: A Case Series
James F. Williams, Jonathan B. Lundy, Kevin K. Chung, Rodney K. Chan, Booker T. King, Evan M. Renz, Leopoldo C. Cancio (2014). Journal of Burn Care & Research, 1. 10.1097/BCR.0000000000000219
Abstract:
Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow
Liang et al., November 2014
Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow
Chuan Liang, Mian Chen, Yan Jin, Yunhu Lu (2014). Journal of Natural Gas Science and Engineering, 364-378. 10.1016/j.jngse.2014.08.025
Abstract:
Irregular wellbore collapse phenomena and accidents frequently occur during drilling operations in Longmaxi shale gas reservoir. Considering shale formation with natural cross beddings and fractures, we propose a multi-weakness plane instead of a single weakness plane failure model. Shale samples obtained from the Lower Silurian Longmaxi Strata of Sichuan Basin are investigated based on characterization and analysis of mineralogy, pore structure, sliding failure condition, and rock mechanics to study the impact of porous flow on jointed shale masses. Results show that Longmaxi gas shale is a brittle and fracture-prone material with poor hydrating capacity and extremely low permeability in rock matrices. Reduction of rock strength under porous flow may contribute to changes in intensity parameters of the weakness planes. Therefore, considering the failure of multi-weakness planes under porous flow, we present a wellbore stability model for shale gas reservoir. Two types of weakness plane distribution patterns are examined to discuss the effect of the occurrence, numbers, and water saturation of weakness planes. The results demonstrate that the number of weakness planes, difference in weakness plane occurrence, and diverse water saturation levels significantly affect wellbore stability during drilling.
Irregular wellbore collapse phenomena and accidents frequently occur during drilling operations in Longmaxi shale gas reservoir. Considering shale formation with natural cross beddings and fractures, we propose a multi-weakness plane instead of a single weakness plane failure model. Shale samples obtained from the Lower Silurian Longmaxi Strata of Sichuan Basin are investigated based on characterization and analysis of mineralogy, pore structure, sliding failure condition, and rock mechanics to study the impact of porous flow on jointed shale masses. Results show that Longmaxi gas shale is a brittle and fracture-prone material with poor hydrating capacity and extremely low permeability in rock matrices. Reduction of rock strength under porous flow may contribute to changes in intensity parameters of the weakness planes. Therefore, considering the failure of multi-weakness planes under porous flow, we present a wellbore stability model for shale gas reservoir. Two types of weakness plane distribution patterns are examined to discuss the effect of the occurrence, numbers, and water saturation of weakness planes. The results demonstrate that the number of weakness planes, difference in weakness plane occurrence, and diverse water saturation levels significantly affect wellbore stability during drilling.
Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs
Ashkan Haghshenas and Hisham A. Nasr-El-Din, November 2014
Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs
Ashkan Haghshenas and Hisham A. Nasr-El-Din (2014). Journal of Natural Gas Science and Engineering, 316-325. 10.1016/j.jngse.2014.08.013
Abstract:
Economic production from tight sand gas reservoirs usually involves multistage hydraulic fracturing. High costs of water acquisition and waste water disposal, and the lack of available water resources near operation sites, make the reuse of produced water an unavoidable option. However, recycling produced water in hydraulic fracturing jobs result in low quality fracturing fluids, which usually have high levels of hardness and salinity. This is especially true for flowback fluids, which contain high polymer loading. The viscosity and rheological properties of fracturing fluids significantly affect leak-off rate, proppant placement, length and width of fractures, fracture conductivity, and consequently, the success of the treatment. The objective of this study is to determine the acceptable dissolved solid contents for flowback fluids to prepare fracturing fluids. Analyses of 36 flowback fluid samples from the West Texas region were collected, and experimental studies were conducted on the analysis of the dissolved solids of produced water, which affect the application of flowback fluids and the capability of prepared fluids in proppant transport and handling. A high-pH borate crosslinked guar-based polymer was selected to determine the ranges of acceptable salt contents. Dynamic viscosity and rheological properties tests, static proppant settling, and small-amplitude oscillation rheology were the methods used to evaluate prepared samples at low, medium, and high temperatures up to 305 °F (152 °C). Some divalent cations such as calcium and magnesium have negative effects on the prepared polymers. Magnesium is the controlling ion, and approximately 30% of flowback fluids must be treated to meet the maximum acceptable concentration criterion. While monovalent cations such as sodium and potassium were tolerable at higher concentrations and the potassium contents in almost all flowback fluids met the determined acceptable value, more than 40% of samples required treatment for high sodium ion concentrations. Although the presence of other ions such as iron shows no significant variation in fracturing fluid properties, they can affect treatment in special cases. Adjusting the concentrations of the polymer, buffer, and crosslinker can minimize the adverse effects of temperature and salts. The fluids prepared with the determined ranges of dissolved solids showed reasonable thermal stability and proppant transport characteristics. This paper introduces the practical operating range for produced water composition and defines the ions that can adversely impact borate-crosslinked fracturing fluid characteristics at different temperatures.
Economic production from tight sand gas reservoirs usually involves multistage hydraulic fracturing. High costs of water acquisition and waste water disposal, and the lack of available water resources near operation sites, make the reuse of produced water an unavoidable option. However, recycling produced water in hydraulic fracturing jobs result in low quality fracturing fluids, which usually have high levels of hardness and salinity. This is especially true for flowback fluids, which contain high polymer loading. The viscosity and rheological properties of fracturing fluids significantly affect leak-off rate, proppant placement, length and width of fractures, fracture conductivity, and consequently, the success of the treatment. The objective of this study is to determine the acceptable dissolved solid contents for flowback fluids to prepare fracturing fluids. Analyses of 36 flowback fluid samples from the West Texas region were collected, and experimental studies were conducted on the analysis of the dissolved solids of produced water, which affect the application of flowback fluids and the capability of prepared fluids in proppant transport and handling. A high-pH borate crosslinked guar-based polymer was selected to determine the ranges of acceptable salt contents. Dynamic viscosity and rheological properties tests, static proppant settling, and small-amplitude oscillation rheology were the methods used to evaluate prepared samples at low, medium, and high temperatures up to 305 °F (152 °C). Some divalent cations such as calcium and magnesium have negative effects on the prepared polymers. Magnesium is the controlling ion, and approximately 30% of flowback fluids must be treated to meet the maximum acceptable concentration criterion. While monovalent cations such as sodium and potassium were tolerable at higher concentrations and the potassium contents in almost all flowback fluids met the determined acceptable value, more than 40% of samples required treatment for high sodium ion concentrations. Although the presence of other ions such as iron shows no significant variation in fracturing fluid properties, they can affect treatment in special cases. Adjusting the concentrations of the polymer, buffer, and crosslinker can minimize the adverse effects of temperature and salts. The fluids prepared with the determined ranges of dissolved solids showed reasonable thermal stability and proppant transport characteristics. This paper introduces the practical operating range for produced water composition and defines the ions that can adversely impact borate-crosslinked fracturing fluid characteristics at different temperatures.
Fracking in the Polish press: Geopolitics and national identity
Jaspal et al., November 2014
Fracking in the Polish press: Geopolitics and national identity
Rusi Jaspal, Brigitte Nerlich, Szczepan Lemańcyzk (2014). Energy Policy, 253-261. 10.1016/j.enpol.2014.09.007
Abstract:
In a context of resource scarcity and political instability, new energy sources and technologies are being explored in many parts of the world and exploited in some. One of these new energy sources is shale gas and one of the countries seeking to decrease its energy dependence and increase its energy security is Poland which is largely dependent on gas and oil imports from Russia. This article presents the results of a thematic content analysis of articles reporting on shale gas/fracking published in Gazeta Wyborcza and Rzeczpospolita, two leading Polish newspapers, from 1 January 2010 to 31 December 2012. Findings suggest that in media reporting the geopolitical dimension of fracking overrides the technological/scientific dimension and that representations are overwhelmingly positive. Positive representations are bolstered through particular linguistic framings. It is argued that the Polish press has polarized the debate on fracking in a particular (positive) direction, which has silenced an open and constructive debate concerning energy policy in Poland and constructed criticism of fracking as counter-normative and “un-Polish.” The potential socio-political and policy implications of these media representations are discussed.
In a context of resource scarcity and political instability, new energy sources and technologies are being explored in many parts of the world and exploited in some. One of these new energy sources is shale gas and one of the countries seeking to decrease its energy dependence and increase its energy security is Poland which is largely dependent on gas and oil imports from Russia. This article presents the results of a thematic content analysis of articles reporting on shale gas/fracking published in Gazeta Wyborcza and Rzeczpospolita, two leading Polish newspapers, from 1 January 2010 to 31 December 2012. Findings suggest that in media reporting the geopolitical dimension of fracking overrides the technological/scientific dimension and that representations are overwhelmingly positive. Positive representations are bolstered through particular linguistic framings. It is argued that the Polish press has polarized the debate on fracking in a particular (positive) direction, which has silenced an open and constructive debate concerning energy policy in Poland and constructed criticism of fracking as counter-normative and “un-Polish.” The potential socio-political and policy implications of these media representations are discussed.
Distance: A critical aspect for environmental impact assessment of hydraulic fracking
Qingmin Meng and Steve Ashby, November 2014
Distance: A critical aspect for environmental impact assessment of hydraulic fracking
Qingmin Meng and Steve Ashby (2014). The Extractive Industries and Society, 124-126. 10.1016/j.exis.2014.07.004
Abstract:
Public concerns about hydraulic fracking are growing and scientists continue to analyze and evaluate its associated environmental impacts. However, a rigorous spatial analysis of environmental impacts is necessary to provide a perspective on risk based on proximity to fracking wells. This comment describes the environmental impacts of fracking within a spatial context. It emphasizes five key points: (1) the closer to a hydraulic fracking well, the higher the risk of groundwater and drinking water well contamination; (2) residents living nearest to a fracking well experience a higher human health risk due to exposure to gas emissions during the fracking process; (3) huge and high density gas emissions are detected and recorded close to fracking wells; (4) fracking induces seismicity and small earthquakes are recorded close to fracking wells; and (5) hydraulic fracking directly changes local environment and landscape characteristics. Spatial impact assessments are critical for improving understanding of the impacts of hydraulic fracking on the environment and society.
Public concerns about hydraulic fracking are growing and scientists continue to analyze and evaluate its associated environmental impacts. However, a rigorous spatial analysis of environmental impacts is necessary to provide a perspective on risk based on proximity to fracking wells. This comment describes the environmental impacts of fracking within a spatial context. It emphasizes five key points: (1) the closer to a hydraulic fracking well, the higher the risk of groundwater and drinking water well contamination; (2) residents living nearest to a fracking well experience a higher human health risk due to exposure to gas emissions during the fracking process; (3) huge and high density gas emissions are detected and recorded close to fracking wells; (4) fracking induces seismicity and small earthquakes are recorded close to fracking wells; and (5) hydraulic fracking directly changes local environment and landscape characteristics. Spatial impact assessments are critical for improving understanding of the impacts of hydraulic fracking on the environment and society.
What's the ‘fracking’ problem? One word can’t say it all
Evensen et al., November 2014
What's the ‘fracking’ problem? One word can’t say it all
Darrick Evensen, Jeffrey B. Jacquet, Christopher E. Clarke, Richard C. Stedman (2014). The Extractive Industries and Society, 130-136. 10.1016/j.exis.2014.06.004
Abstract:
“Fracking” has received substantial attention in scientific, mass media, and public discourse. This word originally referred to the process of hydraulic fracturing, but recently it has taken on a wider range of meanings in many fora. It now denotes one or more of several processes and impacts related to gas/oil exploration, extraction, and development; confusion can arise when it is unclear which processes or impacts are included in a particular use of this term. “Fracking” also carries negative and lewd connotations that shape public representations of the processes and impacts associated with it. By causing confusion and evoking bias, the word “fracking” can constrain meaningful policy conversation about the underlying issues and concerns. We offer recommendations for how to discuss this controversial topic while at best avoiding, or at least supplementing, the term “fracking”.
“Fracking” has received substantial attention in scientific, mass media, and public discourse. This word originally referred to the process of hydraulic fracturing, but recently it has taken on a wider range of meanings in many fora. It now denotes one or more of several processes and impacts related to gas/oil exploration, extraction, and development; confusion can arise when it is unclear which processes or impacts are included in a particular use of this term. “Fracking” also carries negative and lewd connotations that shape public representations of the processes and impacts associated with it. By causing confusion and evoking bias, the word “fracking” can constrain meaningful policy conversation about the underlying issues and concerns. We offer recommendations for how to discuss this controversial topic while at best avoiding, or at least supplementing, the term “fracking”.
Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study
Macey et al., October 2014
Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study
Gregg P. Macey, Ruth Breech, Mark Chernaik, Caroline Cox, Denny Larson, Deb Thomas, David O. Carpenter (2014). Environmental Health, 82. 10.1186/1476-069X-13-82
Abstract:
Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle.
Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle.
Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region
Li et al., October 2014
Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region
R. Li, C. Warneke, M. Graus, R. Field, F. Geiger, P. R. Veres, J. Soltis, S.-M. Li, S. M. Murphy, C. Sweeney, G. Pétron, J. M. Roberts, J. de Gouw (2014). Atmos. Meas. Tech., 3597-3610. 10.5194/amt-7-3597-2014
Abstract:
Natural gas production is associated with emissions of several trace gases, some of them classified as air toxics. While volatile organic compounds (VOCs) have received much attention, hydrogen sulfide (H2S) can also be of concern due to the known health impacts of exposure to this hazardous air pollutant. Here, we present quantitative, fast time-response measurements of H2S using proton-transfer-reaction mass-spectrometry (PTR-MS) instruments. An ultra-light-weight PTR-MS (ULW-PTR-MS) in a mobile laboratory was operated for measurements of VOCs and H2S in a gas and oil field during the Uintah Basin Winter Ozone Study (UBWOS) 2012 campaign. Measurements of VOCs and H2S by a PTR-MS were also made at the Horse Pool ground site in the Uintah Basin during UBWOS 2013. The H2S measurement by PTR-MS is strongly humidity dependent because the proton affinity of H2S is only slightly higher than that of water. The H2S sensitivity of PTR-MS ranged between 0.6–1.4 ncps ppbv−1 during UBWOS 2013. We compare the humidity dependence determined in the laboratory with in-field calibrations and determine the H2S mixing ratios for the mobile and ground measurements. The PTR-MS measurements at Horse Pool are evaluated by comparison with simultaneous H2S measurements using a PTR time-of-flight MS (PTR-ToF-MS) and a Picarro cavity ring down spectroscopy (CRDS) instrument for H2S / CH4. On average 0.6 ± 0.3 ppbv H2S was present at Horse Pool during UBWOS 2013. The correlation between H2S and methane enhancements suggests that the source of H2S is associated with oil and gas extraction in the basin. Significant H2S mixing ratios of up to 9 ppmv downwind of storage tanks were observed during the mobile measurements. This study suggests that H2S emissions associated with oil and gas production can lead to short-term high levels close to point sources, and elevated background levels away from those sources. In addition, our work has demonstrated that PTR-MS can make reliable measurements of H2S at levels below 1 ppbv.
Natural gas production is associated with emissions of several trace gases, some of them classified as air toxics. While volatile organic compounds (VOCs) have received much attention, hydrogen sulfide (H2S) can also be of concern due to the known health impacts of exposure to this hazardous air pollutant. Here, we present quantitative, fast time-response measurements of H2S using proton-transfer-reaction mass-spectrometry (PTR-MS) instruments. An ultra-light-weight PTR-MS (ULW-PTR-MS) in a mobile laboratory was operated for measurements of VOCs and H2S in a gas and oil field during the Uintah Basin Winter Ozone Study (UBWOS) 2012 campaign. Measurements of VOCs and H2S by a PTR-MS were also made at the Horse Pool ground site in the Uintah Basin during UBWOS 2013. The H2S measurement by PTR-MS is strongly humidity dependent because the proton affinity of H2S is only slightly higher than that of water. The H2S sensitivity of PTR-MS ranged between 0.6–1.4 ncps ppbv−1 during UBWOS 2013. We compare the humidity dependence determined in the laboratory with in-field calibrations and determine the H2S mixing ratios for the mobile and ground measurements. The PTR-MS measurements at Horse Pool are evaluated by comparison with simultaneous H2S measurements using a PTR time-of-flight MS (PTR-ToF-MS) and a Picarro cavity ring down spectroscopy (CRDS) instrument for H2S / CH4. On average 0.6 ± 0.3 ppbv H2S was present at Horse Pool during UBWOS 2013. The correlation between H2S and methane enhancements suggests that the source of H2S is associated with oil and gas extraction in the basin. Significant H2S mixing ratios of up to 9 ppmv downwind of storage tanks were observed during the mobile measurements. This study suggests that H2S emissions associated with oil and gas production can lead to short-term high levels close to point sources, and elevated background levels away from those sources. In addition, our work has demonstrated that PTR-MS can make reliable measurements of H2S at levels below 1 ppbv.
Limited impact on decadal-scale climate change from increased use of natural gas
McJeon et al., October 2014
Limited impact on decadal-scale climate change from increased use of natural gas
Haewon McJeon, Jae Edmonds, Nico Bauer, Leon Clarke, Brian Fisher, Brian P. Flannery, Jérôme Hilaire, Volker Krey, Giacomo Marangoni, Raymond Mi, Keywan Riahi, Holger Rogner, Massimo Tavoni (2014). Nature, 482-485. 10.1038/nature13837
Abstract:
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
Shale gas produced water treatment using innovative microbial capacitive desalination cell
Stoll et al., October 2014
Shale gas produced water treatment using innovative microbial capacitive desalination cell
Zachary A. Stoll, Casey Forrestal, Zhiyong Jason Ren, Pei Xu (2014). Journal of Hazardous Materials, 847-855. 10.1016/j.jhazmat.2014.10.015
Abstract:
The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.
The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.
The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing
Mohan et al., October 2014
The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing
Arvind Murali Mohan, Kyle J. Bibby, Daniel Lipus, Richard W. Hammack, Kelvin B. Gregory (2014). PLoS ONE, e107682. 10.1371/journal.pone.0107682
Abstract:
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.
Shale Gas: Current Perspectives and Future Prospects in Turkey and the World
M. V. Kok and S. Merey, October 2014
Shale Gas: Current Perspectives and Future Prospects in Turkey and the World
M. V. Kok and S. Merey (2014). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2492-2501. 10.1080/15567036.2014.943854
Abstract:
With the increased natural gas prices and advancement in the horizontal drilling and hydraulic fracturing technology, there is a high interest in shale gas reservoirs in the world and in Turkey. However, gas production from shale gas reservoirs is quite different than conventional gas reservoirs because permeability in shale gas reservoirs is very low and production mechanism is different due to adsorbed gas and free gas together in these reservoirs. The aim of study is to clarify shale gas reservoirs in terms of the world and Turkey's shale gas potential, gas production mechanism, and current techniques applied.
With the increased natural gas prices and advancement in the horizontal drilling and hydraulic fracturing technology, there is a high interest in shale gas reservoirs in the world and in Turkey. However, gas production from shale gas reservoirs is quite different than conventional gas reservoirs because permeability in shale gas reservoirs is very low and production mechanism is different due to adsorbed gas and free gas together in these reservoirs. The aim of study is to clarify shale gas reservoirs in terms of the world and Turkey's shale gas potential, gas production mechanism, and current techniques applied.
New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations
Warner et al., October 2014
New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations
N. R. Warner, T. H. Darrah, R. B. Jackson, R. Millot, W. Kloppmann, A. Vengosh (2014). Environmental Science & Technology, . 10.1021/es5032135
Abstract:
Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25?31?) and δ7Li (6?10?) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (?0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.
Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25?31?) and δ7Li (6?10?) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (?0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.
Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality
Michael O. Schwartz, October 2014
Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality
Michael O. Schwartz (2014). Environmental Earth Sciences, 4619-4632. 10.1007/s12665-014-3787-3
Abstract:
The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone horizon at Damme, Germany, is simulated in a TOUGHREACT reactive-transport model with 5,728 elements. A hypothetical leakage zone connects the Cretaceous horizon with a Quaternary potable-water aquifer (q1). Methane gas rises up to the q1 horizon in less than 2 days in all calculated scenarios. The simulations include the major constituents of groundwater as well as the seven most hazardous trace components that are natural constituents of groundwater (As, Cd, Cr, Ni, Pb, Se and U). The general trend is characterised by depletion of the natural hazardous components with decreasing acidity and oxygen fugacity in the relevant pH range (7–9). Nevertheless, the concentrations of elements whose dominant aqueous species are negatively charged in this pH range (Cr and Se) rise against the general trend due to desorption reactions. Slight enhancement effects are produced by the dissolution of contaminant-bearing oxides such as Cr-bearing goethite. In summary, the geological risks of a fracking operation are minor. The technical risks are more important. This is especially the case when rising methane gas gets into contact with fracking fluid that accidentally escapes through faulty well seals.
The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone horizon at Damme, Germany, is simulated in a TOUGHREACT reactive-transport model with 5,728 elements. A hypothetical leakage zone connects the Cretaceous horizon with a Quaternary potable-water aquifer (q1). Methane gas rises up to the q1 horizon in less than 2 days in all calculated scenarios. The simulations include the major constituents of groundwater as well as the seven most hazardous trace components that are natural constituents of groundwater (As, Cd, Cr, Ni, Pb, Se and U). The general trend is characterised by depletion of the natural hazardous components with decreasing acidity and oxygen fugacity in the relevant pH range (7–9). Nevertheless, the concentrations of elements whose dominant aqueous species are negatively charged in this pH range (Cr and Se) rise against the general trend due to desorption reactions. Slight enhancement effects are produced by the dissolution of contaminant-bearing oxides such as Cr-bearing goethite. In summary, the geological risks of a fracking operation are minor. The technical risks are more important. This is especially the case when rising methane gas gets into contact with fracking fluid that accidentally escapes through faulty well seals.
Four corners: The largest US methane anomaly viewed from space
Kort et al., October 2014
Four corners: The largest US methane anomaly viewed from space
Eric A. Kort, Christian Frankenberg, Keeley R. Costigan, Rodica Lindenmaier, Manvendra K. Dubey, Debra Wunch (2014). Geophysical Research Letters, 6898-6903. 10.1002/2014GL061503
Abstract:
Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50–0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.
Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50–0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.
Ecological Risks of Shale Oil and Gas Development to Wildlife, Aquatic Resources and their Habitats
Brittingham et al., October 2014
Ecological Risks of Shale Oil and Gas Development to Wildlife, Aquatic Resources and their Habitats
Margaret C. Brittingham, Kelly O. Maloney, Aïda M. Farag, David D. Harper, Zachary H. Bowen (2014). Environmental Science & Technology, 11034-11047. 10.1021/es5020482
Abstract:
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
High winter ozone pollution from carbonyl photolysis in an oil and gas basin
Edwards et al., October 2014
High winter ozone pollution from carbonyl photolysis in an oil and gas basin
Peter M. Edwards, Steven S. Brown, James M. Roberts, Ravan Ahmadov, Robert M. Banta, Joost A. deGouw, William P. Dubé, Robert A. Field, James H. Flynn, Jessica B. Gilman, Martin Graus, Detlev Helmig, Abigail Koss, Andrew O. Langford, Barry L. Lefer, Brian M. Lerner, Rui Li, Shao-Meng Li, Stuart A. McKeen, Shane M. Murphy, David D. Parrish, Christoph J. Senff, Jeffrey Soltis, Jochen Stutz, Colm Sweeney, Chelsea R. Thompson, Michael K. Trainer, Catalina Tsai, Patrick R. Veres, Rebecca A. Washenfelder, Carsten Warneke, Robert J. Wild, Cora J. Young, Bin Yuan, Robert Zamora (2014). Nature, 351-354. 10.1038/nature13767
Abstract:
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
The Environmental Costs and Benefits of Fracking
Jackson et al., October 2014
The Environmental Costs and Benefits of Fracking
Robert B. Jackson, Avner Vengosh, J. William Carey, Richard J. Davies, Thomas H. Darrah, Francis O'Sullivan, Gabrielle Pétron (2014). Annual Review of Environment and Resources, null. 10.1146/annurev-environ-031113-144051
Abstract:
Unconventional oil and natural gas extraction enabled by horizontal drilling and hydraulic fracturing (fracking) is driving an economic boom, with consequences described from “revolutionary” to “disastrous.” Reality lies somewhere in between. Unconventional energy generates income and, done well, can reduce air pollution and even water use compared with other fossil fuels. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Primary threats to water resources include surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. An increase in volatile organic compounds and air toxics locally are potential health threats, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate air pollution. Data gaps are particularly evident for human health studies, for the question of whether natural gas will displace coal compared with renewables, and for decadal-scale legacy issues of well leakage and plugging and abandonment practices. Critical topics for future research include data for (a) estimated ultimate recovery (EUR) of unconventional hydrocarbons, (b) the potential for further reductions of water requirements and chemical toxicity, (c) whether unconventional resource development alters the frequency of well integrity failures, (d) potential contamination of surface and ground waters from drilling and spills, (e) factors that could cause wastewater injection to generate large earthquakes, and (f) the consequences of greenhouse gases and air pollution on ecosystems and human health. Expected final online publication date for the Annual Review of Environment and Resources Volume 39 is October 17, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Unconventional oil and natural gas extraction enabled by horizontal drilling and hydraulic fracturing (fracking) is driving an economic boom, with consequences described from “revolutionary” to “disastrous.” Reality lies somewhere in between. Unconventional energy generates income and, done well, can reduce air pollution and even water use compared with other fossil fuels. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Primary threats to water resources include surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. An increase in volatile organic compounds and air toxics locally are potential health threats, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate air pollution. Data gaps are particularly evident for human health studies, for the question of whether natural gas will displace coal compared with renewables, and for decadal-scale legacy issues of well leakage and plugging and abandonment practices. Critical topics for future research include data for (a) estimated ultimate recovery (EUR) of unconventional hydrocarbons, (b) the potential for further reductions of water requirements and chemical toxicity, (c) whether unconventional resource development alters the frequency of well integrity failures, (d) potential contamination of surface and ground waters from drilling and spills, (e) factors that could cause wastewater injection to generate large earthquakes, and (f) the consequences of greenhouse gases and air pollution on ecosystems and human health. Expected final online publication date for the Annual Review of Environment and Resources Volume 39 is October 17, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Evaluation of Some Potential Chemical Exposure Risks During Flowback Operations in Unconventional Oil and Gas Extraction: Preliminary Results
Esswein et al., October 2014
Evaluation of Some Potential Chemical Exposure Risks During Flowback Operations in Unconventional Oil and Gas Extraction: Preliminary Results
Eric J. Esswein, John Snawder, Bradley King, Michael Breitenstein, Marissa Alexander-Scott, Max Kiefer (2014). Journal of Occupational and Environmental Hygiene, D174-D184. 10.1080/15459624.2014.933960
Abstract:
Shale gas policy in the United Kingdom: An argumentative discourse analysis
Cotton et al., October 2014
Shale gas policy in the United Kingdom: An argumentative discourse analysis
Matthew Cotton, Imogen Rattle, James Van Alstine (2014). Energy Policy, 427-438. 10.1016/j.enpol.2014.05.031
Abstract:
Shale gas has become an energy policy priority in the United Kingdom in light of profitable extraction activities in the United States. Since 2012 the Coalition Government has created key economic drivers to encourage shale exploration, whilst growing activism in affected site communities has stirred significant media and academic commentary. This study examines the growing national debate as a matter of discourse, adopting an argumentative discourse analytic approach to assess data collected from stakeholder interviews (n=21) and key policy actor statements quoted in broadsheet newspapers. We explore three dominant “storylines” emerging in relation to shale gas policy: (1) “cleanliness and dirt” concerns the relative framing of the environmental benefits and harms of shale gas; (2) “energy transitions – pathways and diversions” concerns geographic metaphors of transitions to carbon intensive and low-carbon energy systems; and (3) “geographies of environmental justice” concerns divisions of economic benefit distribution, environmental impact and procedural fairness. We find that central government policy rhetoric emphasises economic development, regulatory oversight and distribution of benefits to site communities, whilst minimising discussion of the implications of shale gas for anthropogenic climate change. The role of these discourses in influencing shale gas policy is discussed.
Shale gas has become an energy policy priority in the United Kingdom in light of profitable extraction activities in the United States. Since 2012 the Coalition Government has created key economic drivers to encourage shale exploration, whilst growing activism in affected site communities has stirred significant media and academic commentary. This study examines the growing national debate as a matter of discourse, adopting an argumentative discourse analytic approach to assess data collected from stakeholder interviews (n=21) and key policy actor statements quoted in broadsheet newspapers. We explore three dominant “storylines” emerging in relation to shale gas policy: (1) “cleanliness and dirt” concerns the relative framing of the environmental benefits and harms of shale gas; (2) “energy transitions – pathways and diversions” concerns geographic metaphors of transitions to carbon intensive and low-carbon energy systems; and (3) “geographies of environmental justice” concerns divisions of economic benefit distribution, environmental impact and procedural fairness. We find that central government policy rhetoric emphasises economic development, regulatory oversight and distribution of benefits to site communities, whilst minimising discussion of the implications of shale gas for anthropogenic climate change. The role of these discourses in influencing shale gas policy is discussed.
Organic compounds in produced waters from shale gas wells
Samuel J. Maguire-Boyle and Andrew R. Barron, September 2014
Organic compounds in produced waters from shale gas wells
Samuel J. Maguire-Boyle and Andrew R. Barron (2014). Environmental Science: Processes & Impacts, 2237-2248. 10.1039/C4EM00376D
Abstract:
A detailed analysis is reported of the organic composition of produced water samples from typical shale gas wells in the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) formations. The quality of shale gas produced (and frac flowback) waters is a current environmental concern and disposal problem for producers. Re-use of produced water for hydraulic fracturing is being encouraged; however, knowledge of the organic impurities is important in determining the method of treatment. The metal content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Mineral elements are expected depending on the reservoir geology and salts used in hydraulic fracturing; however, significant levels of other transition metals and heavier main group elements are observed. The presence of scaling elements (Ca and Ba) is related to the pH of the water rather than total dissolved solids (TDS). Using gas chromatography mass spectrometry (GC/MS) analysis of the chloroform extracts of the produced water samples, a plethora of organic compounds were identified. In each water sample, the majority of organics are saturated (aliphatic), and only a small fraction comes under aromatic, resin, and asphaltene categories. Unlike coalbed methane produced water it appears that shale oil/gas produced water does not contain significant quantities of polyaromatic hydrocarbons reducing the potential health hazard. Marcellus and Barnett produced waters contain predominantly C6–C16 hydrocarbons, while the Eagle Ford produced water shows the highest concentration in the C17–C30 range. The structures of the saturated hydrocarbons identified generally follows the trend of linear > branched > cyclic. Heterocyclic compounds are identified with the largest fraction being fatty alcohols, esters, and ethers. However, the presence of various fatty acid phthalate esters in the Barnett and Marcellus produced waters can be related to their use in drilling fluids and breaker additives rather than their presence in connate fluids. Halogen containing compounds are found in each of the water samples, and although the fluorocarbon compounds identified are used as tracers, the presence of chlorocarbons and organobromides formed as a consequence of using chlorine containing oxidants (to remove bacteria from source water), suggests that industry should concentrate on non-chemical treatments of frac and produced waters.
A detailed analysis is reported of the organic composition of produced water samples from typical shale gas wells in the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) formations. The quality of shale gas produced (and frac flowback) waters is a current environmental concern and disposal problem for producers. Re-use of produced water for hydraulic fracturing is being encouraged; however, knowledge of the organic impurities is important in determining the method of treatment. The metal content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Mineral elements are expected depending on the reservoir geology and salts used in hydraulic fracturing; however, significant levels of other transition metals and heavier main group elements are observed. The presence of scaling elements (Ca and Ba) is related to the pH of the water rather than total dissolved solids (TDS). Using gas chromatography mass spectrometry (GC/MS) analysis of the chloroform extracts of the produced water samples, a plethora of organic compounds were identified. In each water sample, the majority of organics are saturated (aliphatic), and only a small fraction comes under aromatic, resin, and asphaltene categories. Unlike coalbed methane produced water it appears that shale oil/gas produced water does not contain significant quantities of polyaromatic hydrocarbons reducing the potential health hazard. Marcellus and Barnett produced waters contain predominantly C6–C16 hydrocarbons, while the Eagle Ford produced water shows the highest concentration in the C17–C30 range. The structures of the saturated hydrocarbons identified generally follows the trend of linear > branched > cyclic. Heterocyclic compounds are identified with the largest fraction being fatty alcohols, esters, and ethers. However, the presence of various fatty acid phthalate esters in the Barnett and Marcellus produced waters can be related to their use in drilling fluids and breaker additives rather than their presence in connate fluids. Halogen containing compounds are found in each of the water samples, and although the fluorocarbon compounds identified are used as tracers, the presence of chlorocarbons and organobromides formed as a consequence of using chlorine containing oxidants (to remove bacteria from source water), suggests that industry should concentrate on non-chemical treatments of frac and produced waters.
The effect of natural gas supply on US renewable energy and CO2 emissions
Shearer et al., September 2014
The effect of natural gas supply on US renewable energy and CO2 emissions
Christine Shearer, John Bistline, Mason Inman, Steven J. Davis (2014). Environmental Research Letters, 094008. 10.1088/1748-9326/9/9/094008
Abstract:
Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013–55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.
Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013–55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.
Comparison of Water Use for Hydraulic Fracturing for Shale Oil and Gas Production versus Conventional Oil
Scanlon et al., September 2014
Comparison of Water Use for Hydraulic Fracturing for Shale Oil and Gas Production versus Conventional Oil
Bridget R. Scanlon, Robert C. Reedy, Jean-Philippe Nicot (2014). Environmental Science & Technology, 12386-12393. 10.1021/es502506v
Abstract:
We compared water use for hydraulic fracturing (HF) for oil versus gas production within the Eagle Ford shale. We then compared HF water use for Eagle Ford oil with Bakken oil, both plays accounting for two thirds of U.S. unconventional oil production in 2013. In the Eagle Ford, we found similar average water use in oil and gas zones per well (4.7-4.9×10(6) gallons [gal]/well). However, about twice as much water is used per unit of energy (water-to-oil ratio, WOR, vol water/vol oil) in the oil zone (WOR: 1.4) as in the gas zone (water-to-oil-equivalent-ratio, WOER: 0.6). We also found large differences in water use for oil between the two plays, with mean Bakken water use/well (2.0×10(6) gal/well) about half that in the Eagle Ford, and a third per energy unit. We attribute these variations mostly to geological differences. Water-to-oil ratios for these plays (0.6-1.4) will further decrease (0.2-0.4) based on estimated ultimate oil recovery of wells. These unconventional water-to-oil ratios (0.2-1.4) are within the lower range of those for U.S. conventional oil production (WOR: 0.1-5). Therefore, the U.S. is using more water because HF has expanded oil production, not because HF is using more water per unit of oil production.
We compared water use for hydraulic fracturing (HF) for oil versus gas production within the Eagle Ford shale. We then compared HF water use for Eagle Ford oil with Bakken oil, both plays accounting for two thirds of U.S. unconventional oil production in 2013. In the Eagle Ford, we found similar average water use in oil and gas zones per well (4.7-4.9×10(6) gallons [gal]/well). However, about twice as much water is used per unit of energy (water-to-oil ratio, WOR, vol water/vol oil) in the oil zone (WOR: 1.4) as in the gas zone (water-to-oil-equivalent-ratio, WOER: 0.6). We also found large differences in water use for oil between the two plays, with mean Bakken water use/well (2.0×10(6) gal/well) about half that in the Eagle Ford, and a third per energy unit. We attribute these variations mostly to geological differences. Water-to-oil ratios for these plays (0.6-1.4) will further decrease (0.2-0.4) based on estimated ultimate oil recovery of wells. These unconventional water-to-oil ratios (0.2-1.4) are within the lower range of those for U.S. conventional oil production (WOR: 0.1-5). Therefore, the U.S. is using more water because HF has expanded oil production, not because HF is using more water per unit of oil production.
Analysis of the Groundwater Monitoring Controversy at the Pavillion, Wyoming Natural Gas Field
Daniel B. Stephens, September 2014
Analysis of the Groundwater Monitoring Controversy at the Pavillion, Wyoming Natural Gas Field
Daniel B. Stephens (2014). Ground Water, . 10.1111/gwat.12272
Abstract:
The U.S. Environmental Protection Agency (EPA) was contacted by citizens of Pavillion, Wyoming 6 years ago regarding taste and odor in their water wells in an area where hydraulic fracturing operations were occurring. EPA conducted a field investigation, including drilling two deep monitor wells, and concluded in a draft report that constituents associated with hydraulic fracturing had impacted the drinking water aquifer. Following extensive media coverage, pressure from state and other federal agencies, and extensive technical criticism from industry, EPA stated the draft report would not undergo peer review, that it would not rely on the conclusions, and that it had relinquished its lead role in the investigation to the State of Wyoming for further investigation without resolving the source of the taste and odor problem. Review of the events leading up to EPA's decision suggests that much of the criticism could have been avoided through improved preproject planning with clear objectives. Such planning would have identified the high national significance and potential implications of the proposed work. Expanded stakeholder involvement and technical input could have eliminated some of the difficulties that plagued the investigation. However, collecting baseline groundwater quality data prior to initiating hydraulic fracturing likely would have been an effective way to evaluate potential impacts. The Pavillion groundwater investigation provides an excellent opportunity for improving field methods, report transparency, clarity of communication, and the peer review process in future investigations of the impacts of hydraulic fracturing on groundwater.
The U.S. Environmental Protection Agency (EPA) was contacted by citizens of Pavillion, Wyoming 6 years ago regarding taste and odor in their water wells in an area where hydraulic fracturing operations were occurring. EPA conducted a field investigation, including drilling two deep monitor wells, and concluded in a draft report that constituents associated with hydraulic fracturing had impacted the drinking water aquifer. Following extensive media coverage, pressure from state and other federal agencies, and extensive technical criticism from industry, EPA stated the draft report would not undergo peer review, that it would not rely on the conclusions, and that it had relinquished its lead role in the investigation to the State of Wyoming for further investigation without resolving the source of the taste and odor problem. Review of the events leading up to EPA's decision suggests that much of the criticism could have been avoided through improved preproject planning with clear objectives. Such planning would have identified the high national significance and potential implications of the proposed work. Expanded stakeholder involvement and technical input could have eliminated some of the difficulties that plagued the investigation. However, collecting baseline groundwater quality data prior to initiating hydraulic fracturing likely would have been an effective way to evaluate potential impacts. The Pavillion groundwater investigation provides an excellent opportunity for improving field methods, report transparency, clarity of communication, and the peer review process in future investigations of the impacts of hydraulic fracturing on groundwater.
Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales
Darrah et al., September 2014
Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales
Thomas H. Darrah, Avner Vengosh, Robert B. Jackson, Nathaniel R. Warner, Robert J. Poreda (2014). Proceedings of the National Academy of Sciences, 201322107. 10.1073/pnas.1322107111
Abstract:
Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.
Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ13C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., 4He, 20Ne, 36Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, 4He) were significantly higher (P < 0.01) and the proportions of atmospheric gases (air-saturated water; e.g., N2, 36Ar) were significantly lower (P < 0.01) relative to background groundwater. Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.
Enhanced Formation of Disinfection By-Products in Shale Gas Wastewater-Impacted Drinking Water Supplies
Parker et al., September 2014
Enhanced Formation of Disinfection By-Products in Shale Gas Wastewater-Impacted Drinking Water Supplies
Kimberly M. Parker, Teng Zeng, Jennifer Harkness, Avner Vengosh, William Armistead Mitch (2014). Environmental Science & Technology, . 10.1021/es5028184
Abstract:
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation towards formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01%-0.03% contribution of Marcellus HFW (a range of 70 to 200 g/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01%-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation towards formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01%-0.03% contribution of Marcellus HFW (a range of 70 to 200 g/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01%-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach
Kourosh Vafi and Adam R. Brandt, September 2014
Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach
Kourosh Vafi and Adam R. Brandt (2014). Environmental Science & Technology, 10511-10518. 10.1021/es502107s
Abstract:
Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water–oil ratio (WOR) and steam–oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1–0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.
Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water–oil ratio (WOR) and steam–oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1–0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.
Unconventional natural gas development and public health: toward a community-informed research agenda
Korfmacher et al., September 2014
Unconventional natural gas development and public health: toward a community-informed research agenda
Katrina Smith Korfmacher, Sarah Elam, Kathleen M. Gray, Erin Haynes, Megan Hoert Hughes (2014). Reviews on Environmental Health, . 10.1515/reveh-2014-0049
Abstract:
Unconventional natural gas development (UNGD) using high-volume horizontal hydraulic fracturing (“fracking”) has vastly increased the potential for domestic natural gas production in recent years. However, the rapid expansion of UNGD has also raised concerns about its potential impacts on public health. Academics and government agencies are developing research programs to explore these concerns. Community involvement in activities such as planning, conducting, and communicating research is widely recognized as having an important role in promoting environmental health. Historically, however, communities most often engage in research after environmental health concerns have emerged. This community information needs assessment took a prospective approach to integrating community leaders’ knowledge, perceptions, and concerns into the research agenda prior to initiation of local UNGD. We interviewed community leaders about their views on environmental health information needs in three states (New York, North Carolina, and Ohio) prior to widespread UNGD. Interviewees emphasized the cumulative, long-term, and indirect determinants of health, as opposed to specific disease outcomes. Responses focused not only on information needs, but also on communication and transparency with respect to research processes and funding. Interviewees also prioritized investigation of policy approaches to effectively protect human health over the long term. Although universities were most often cited as a credible source of information, interviewees emphasized the need for multiple strategies for disseminating information. By including community leaders’ concerns, insights, and questions from the outset, the research agenda on UNGD is more likely to effectively inform decision making that ultimately protects public health.
Unconventional natural gas development (UNGD) using high-volume horizontal hydraulic fracturing (“fracking”) has vastly increased the potential for domestic natural gas production in recent years. However, the rapid expansion of UNGD has also raised concerns about its potential impacts on public health. Academics and government agencies are developing research programs to explore these concerns. Community involvement in activities such as planning, conducting, and communicating research is widely recognized as having an important role in promoting environmental health. Historically, however, communities most often engage in research after environmental health concerns have emerged. This community information needs assessment took a prospective approach to integrating community leaders’ knowledge, perceptions, and concerns into the research agenda prior to initiation of local UNGD. We interviewed community leaders about their views on environmental health information needs in three states (New York, North Carolina, and Ohio) prior to widespread UNGD. Interviewees emphasized the cumulative, long-term, and indirect determinants of health, as opposed to specific disease outcomes. Responses focused not only on information needs, but also on communication and transparency with respect to research processes and funding. Interviewees also prioritized investigation of policy approaches to effectively protect human health over the long term. Although universities were most often cited as a credible source of information, interviewees emphasized the need for multiple strategies for disseminating information. By including community leaders’ concerns, insights, and questions from the outset, the research agenda on UNGD is more likely to effectively inform decision making that ultimately protects public health.
Birth Outcomes and Natural Gas Development: Methodological Limitations
Fedak et al., September 2014
Birth Outcomes and Natural Gas Development: Methodological Limitations
Kristen Fedak, Sherilyn Gross, Megan Jacobsen, Brooke Tvermoes (2014). Environmental Health Perspectives, A232-A232. 10.1289/ehp.1408647
Abstract:
Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation
Davies et al., September 2014
Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation
Richard J. Davies, Sam Almond, Robert S. Ward, Robert B. Jackson, Charlotte Adams, Fred Worrall, Liam G. Herringshaw, Jon G. Gluyas, Mark A. Whitehead (2014). Marine and Petroleum Geology, 239-254. 10.1016/j.marpetgeo.2014.03.001
Abstract:
Data from around the world (Australia, Austria, Bahrain, Brazil, Canada, the Netherlands, Poland, the UK and the USA) show that more than four million onshore hydrocarbon wells have been drilled globally. Here we assess all the reliable datasets (25) on well barrier and integrity failure in the published literature and online. These datasets include production, injection, idle and abandoned wells, both onshore and offshore, exploiting both conventional and unconventional reservoirs. The datasets vary considerably in terms of the number of wells examined, their age and their designs. Therefore the percentage of wells that have had some form of well barrier or integrity failure is highly variable (1.9%–75%). Of the 8030 wells targeting the Marcellus shale inspected in Pennsylvania between 2005 and 2013, 6.3% of these have been reported to the authorities for infringements related to well barrier or integrity failure. In a separate study of 3533 Pennsylvanian wells monitored between 2008 and 2011, there were 85 examples of cement or casing failures, 4 blowouts and 2 examples of gas venting. In the UK, 2152 hydrocarbon wells were drilled onshore between 1902 and 2013 mainly targeting conventional reservoirs. UK regulations, like those of other jurisdictions, include reclamation of the well site after well abandonment. As such, there is no visible evidence of 65.2% of these well sites on the land surface today and monitoring is not carried out. The ownership of up to 53% of wells in the UK is unclear; we estimate that between 50 and 100 are orphaned. Of 143 active UK wells that were producing at the end of 2000, one has evidence of a well integrity failure.
Data from around the world (Australia, Austria, Bahrain, Brazil, Canada, the Netherlands, Poland, the UK and the USA) show that more than four million onshore hydrocarbon wells have been drilled globally. Here we assess all the reliable datasets (25) on well barrier and integrity failure in the published literature and online. These datasets include production, injection, idle and abandoned wells, both onshore and offshore, exploiting both conventional and unconventional reservoirs. The datasets vary considerably in terms of the number of wells examined, their age and their designs. Therefore the percentage of wells that have had some form of well barrier or integrity failure is highly variable (1.9%–75%). Of the 8030 wells targeting the Marcellus shale inspected in Pennsylvania between 2005 and 2013, 6.3% of these have been reported to the authorities for infringements related to well barrier or integrity failure. In a separate study of 3533 Pennsylvanian wells monitored between 2008 and 2011, there were 85 examples of cement or casing failures, 4 blowouts and 2 examples of gas venting. In the UK, 2152 hydrocarbon wells were drilled onshore between 1902 and 2013 mainly targeting conventional reservoirs. UK regulations, like those of other jurisdictions, include reclamation of the well site after well abandonment. As such, there is no visible evidence of 65.2% of these well sites on the land surface today and monitoring is not carried out. The ownership of up to 53% of wells in the UK is unclear; we estimate that between 50 and 100 are orphaned. Of 143 active UK wells that were producing at the end of 2000, one has evidence of a well integrity failure.
The fate of residual treatment water in gas shale
Engelder et al., September 2014
The fate of residual treatment water in gas shale
Terry Engelder, Lawrence M. Cathles, L. Taras Bryndzia (2014). Journal of Unconventional Oil and Gas Resources, 33-48. 10.1016/j.juogr.2014.03.002
Abstract:
More than 2 × 104 m3 of water containing additives is commonly injected into a typical horizontal well in gas shale to open fractures and allow gas recovery. Less than half of this treatment water is recovered as flowback or later production brine, and in many cases recovery is <30%. While recovered treatment water is safely managed at the surface, the water left in place, called residual treatment water (RTW), slips beyond the control of engineers. Some have suggested that this RTW poses a long term and serious risk to shallow aquifers by virtue of being free water that can flow upward along natural pathways, mainly fractures and faults. These concerns are based on single phase Darcy Law physics which is not appropriate when gas and water are both present. In addition, the combined volume of the RTW and the initial brine in gas shale is too small to impact near surface aquifers even if it could escape. When capillary and osmotic forces are considered, there are no forces propelling the RTW upward from gas shale along natural pathways. The physics dominating these processes ensure that capillary and osmotic forces both propel the RTW into the matrix of the shale, thus permanently sequestering it. Furthermore, contrary to the suggestion that hydraulic fracturing could accelerate brine escape and make near surface aquifer contamination more likely, hydraulic fracturing and gas recovery will actually reduce this risk. We demonstrate this in a series of STP counter-current imbibition experiments on cuttings recovered from the Union Springs Member of the Marcellus gas shale in Pennsylvania and on core plugs of Haynesville gas shale from NW Louisiana.
More than 2 × 104 m3 of water containing additives is commonly injected into a typical horizontal well in gas shale to open fractures and allow gas recovery. Less than half of this treatment water is recovered as flowback or later production brine, and in many cases recovery is <30%. While recovered treatment water is safely managed at the surface, the water left in place, called residual treatment water (RTW), slips beyond the control of engineers. Some have suggested that this RTW poses a long term and serious risk to shallow aquifers by virtue of being free water that can flow upward along natural pathways, mainly fractures and faults. These concerns are based on single phase Darcy Law physics which is not appropriate when gas and water are both present. In addition, the combined volume of the RTW and the initial brine in gas shale is too small to impact near surface aquifers even if it could escape. When capillary and osmotic forces are considered, there are no forces propelling the RTW upward from gas shale along natural pathways. The physics dominating these processes ensure that capillary and osmotic forces both propel the RTW into the matrix of the shale, thus permanently sequestering it. Furthermore, contrary to the suggestion that hydraulic fracturing could accelerate brine escape and make near surface aquifer contamination more likely, hydraulic fracturing and gas recovery will actually reduce this risk. We demonstrate this in a series of STP counter-current imbibition experiments on cuttings recovered from the Union Springs Member of the Marcellus gas shale in Pennsylvania and on core plugs of Haynesville gas shale from NW Louisiana.
Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking)
Benjamin K. Sovacool, September 2014
Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking)
Benjamin K. Sovacool (2014). Renewable and Sustainable Energy Reviews, 249-264. 10.1016/j.rser.2014.04.068
Abstract:
This study assesses the overall technical, economic, environmental, and social costs and benefits of the hydraulic fracturing (“fracking”) of natural gas. Drawn from a review of more than 100 studies looking at shale gas in the past 10 years, most of them peer-reviewed, this article begins by briefly explaining the process of hydrofracking and summarizing recent market trends up until late 2013. Then, the study discusses a series of advantages and disadvantages to hydrofracking. It notes that done properly, shale gas development can enhance energy security and the availability of energy fuels, lower natural gas prices, offer a cleaner environmental footprint than some other fossil fuels, and enable local economic development. However, done poorly production can be prone to accidents and leakage, contribute to environmental degradation, induce earthquakes, and, when externalities are accounted for, produce more net economic losses than profits. The study concludes that the pursuit and utilization of shale gas thus presents policymakers, planners, and investors with a series of pernicious tradeoffs and tough choices.
This study assesses the overall technical, economic, environmental, and social costs and benefits of the hydraulic fracturing (“fracking”) of natural gas. Drawn from a review of more than 100 studies looking at shale gas in the past 10 years, most of them peer-reviewed, this article begins by briefly explaining the process of hydrofracking and summarizing recent market trends up until late 2013. Then, the study discusses a series of advantages and disadvantages to hydrofracking. It notes that done properly, shale gas development can enhance energy security and the availability of energy fuels, lower natural gas prices, offer a cleaner environmental footprint than some other fossil fuels, and enable local economic development. However, done poorly production can be prone to accidents and leakage, contribute to environmental degradation, induce earthquakes, and, when externalities are accounted for, produce more net economic losses than profits. The study concludes that the pursuit and utilization of shale gas thus presents policymakers, planners, and investors with a series of pernicious tradeoffs and tough choices.
Shale gas: Analysis of its role in the global energy market
Mehmet Melikoglu, September 2014
Shale gas: Analysis of its role in the global energy market
Mehmet Melikoglu (2014). Renewable and Sustainable Energy Reviews, 460-468. 10.1016/j.rser.2014.05.002
Abstract:
Shale gas revolution that took place in the United States at the beginning of the 21st century has still been shaping our global fossil fuel market. In 2012, the U.S. has surpassed Russia in natural gas production for the first time since 1982. At the same year, annual average U.S. Henry hub natural gas spot price decreased to $2.75 per million BTU, which was $8.69 per million BTU in 2005. In 2013, proved shale gas reserves of the world is estimated at nearly 2.7 trillion cubic metres (tcm) and unproved resources at staggering 203.9 tcm. As a result, there is a global rush to develop most of this resource as possible. However, shale gas is no miracle fuel. It has been suggested that its effects on the environment could be worse than conventional natural gas. Fugitive methane emissions, groundwater pollution, and increased seismicity are amongst the most important potential environmental side effects. There is also concern about the accuracy of resource potential estimations due to lack of data and specifically designed shale gas reservoir models. Nonetheless, the analysis in this study clearly showed that without developing global shale gas resources we have to consume 66% of our proved natural gas reserves to supply the demand till 2040. This would make most of the world natural gas importers, and rules of economy dictate that limited supply and increasing demand would skyrocket natural gas prices. Therefore, shale gas resource development is not an option but a must for the continuance of our global energy market and economy.
Shale gas revolution that took place in the United States at the beginning of the 21st century has still been shaping our global fossil fuel market. In 2012, the U.S. has surpassed Russia in natural gas production for the first time since 1982. At the same year, annual average U.S. Henry hub natural gas spot price decreased to $2.75 per million BTU, which was $8.69 per million BTU in 2005. In 2013, proved shale gas reserves of the world is estimated at nearly 2.7 trillion cubic metres (tcm) and unproved resources at staggering 203.9 tcm. As a result, there is a global rush to develop most of this resource as possible. However, shale gas is no miracle fuel. It has been suggested that its effects on the environment could be worse than conventional natural gas. Fugitive methane emissions, groundwater pollution, and increased seismicity are amongst the most important potential environmental side effects. There is also concern about the accuracy of resource potential estimations due to lack of data and specifically designed shale gas reservoir models. Nonetheless, the analysis in this study clearly showed that without developing global shale gas resources we have to consume 66% of our proved natural gas reserves to supply the demand till 2040. This would make most of the world natural gas importers, and rules of economy dictate that limited supply and increasing demand would skyrocket natural gas prices. Therefore, shale gas resource development is not an option but a must for the continuance of our global energy market and economy.
The energy, water, and air pollution implications of tapping China's shale gas reserves
Chang et al., September 2014
The energy, water, and air pollution implications of tapping China's shale gas reserves
Yuan Chang, Runze Huang, Eric Masanet (2014). Resources, Conservation and Recycling, 100-108. 10.1016/j.resconrec.2014.07.015
Abstract:
China has laid out an ambitious strategy for developing its vast shale gas reserves. This study developed an input–output based hybrid life-cycle inventory model to estimate the energy use, water consumption, and air emissions implications of shale gas infrastructure development in China over the period 2013–2020, including well drilling and operation, land rig and fracturing fleet manufacture, and pipeline construction. Multiple scenarios were analyzed based on different combinations of well development rates, well productivities, and success rates. Results suggest that 700–5100 petajoules (PJ) of primary energy will be required for shale gas infrastructure development, while the net primary energy yield of shale gas production over 2013–2020 was estimated at 1650–7150 PJ, suggesting a favorable energy balance. Associated emissions of CO2e were estimated at 80–580 million metric tons, and were primarily attributable to coal-fired electricity generation, fugitive methane, and flaring of methane during shale gas processing and transmission. Direct water consumption was estimated at 20–720 million metric tons. The largest sources of energy use and emissions for infrastructure development were the metals, mining, non-metal mineral products, and power sectors, which should be the focus of energy efficiency initiatives to reduce the impacts of shale gas infrastructure development moving forward.
China has laid out an ambitious strategy for developing its vast shale gas reserves. This study developed an input–output based hybrid life-cycle inventory model to estimate the energy use, water consumption, and air emissions implications of shale gas infrastructure development in China over the period 2013–2020, including well drilling and operation, land rig and fracturing fleet manufacture, and pipeline construction. Multiple scenarios were analyzed based on different combinations of well development rates, well productivities, and success rates. Results suggest that 700–5100 petajoules (PJ) of primary energy will be required for shale gas infrastructure development, while the net primary energy yield of shale gas production over 2013–2020 was estimated at 1650–7150 PJ, suggesting a favorable energy balance. Associated emissions of CO2e were estimated at 80–580 million metric tons, and were primarily attributable to coal-fired electricity generation, fugitive methane, and flaring of methane during shale gas processing and transmission. Direct water consumption was estimated at 20–720 million metric tons. The largest sources of energy use and emissions for infrastructure development were the metals, mining, non-metal mineral products, and power sectors, which should be the focus of energy efficiency initiatives to reduce the impacts of shale gas infrastructure development moving forward.
Ensuring benefits from North American shale gas development: Towards a research agenda
Bazilian et al., September 2014
Ensuring benefits from North American shale gas development: Towards a research agenda
M. Bazilian, A. R. Brandt, L. Billman, G. Heath, J. Logan, M. Mann, M. Melaina, P. Statwick, D. Arent, S. M. Benson (2014). Journal of Unconventional Oil and Gas Resources, 71-74. 10.1016/j.juogr.2014.01.003
Abstract:
The North American shale gas “revolution” provides tremendous opportunities, but our scientific understanding of this transition and its potential near- and long-term social, economic, and environmental impacts lags behind the rapid pace of change. Investors, policy makers, and other stakeholders need greater clarity to make robust decisions in today’s dynamic natural gas sector. A comprehensive, interdisciplinary research agenda can help inform these decisions.
The North American shale gas “revolution” provides tremendous opportunities, but our scientific understanding of this transition and its potential near- and long-term social, economic, and environmental impacts lags behind the rapid pace of change. Investors, policy makers, and other stakeholders need greater clarity to make robust decisions in today’s dynamic natural gas sector. A comprehensive, interdisciplinary research agenda can help inform these decisions.
Analysis of Hydraulic Fracturing Flowback and Produced Waters Using Accurate Mass: Identification of Ethoxylated Surfactants
Thurman et al., August 2014
Analysis of Hydraulic Fracturing Flowback and Produced Waters Using Accurate Mass: Identification of Ethoxylated Surfactants
E. Michael Thurman, Imma Ferrer, Jens Blotevogel, Thomas Borch (2014). Analytical Chemistry, . 10.1021/ac502163k
Abstract:
Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3 to EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly- and doubly-charged forms. A structural model of adduct formation is presented and binding constants are calculated, which is based on a spherical cage-like conformation, where the central cation ( NH4+ or Na+) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over five hundred accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate ?fingerprinting?, in a first application to monitor water quality that results from fluids used in hydraulic fracturing.
Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3 to EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly- and doubly-charged forms. A structural model of adduct formation is presented and binding constants are calculated, which is based on a spherical cage-like conformation, where the central cation ( NH4+ or Na+) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over five hundred accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate ?fingerprinting?, in a first application to monitor water quality that results from fluids used in hydraulic fracturing.
Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-D numerical modeling approach
Zhang et al., August 2014
Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-D numerical modeling approach
Liwei Zhang, Nicole Anderson, Robert Dilmore, Daniel J. Soeder, Grant Bromhal (2014). Environmental Science & Technology, . 10.1021/es501997p
Abstract:
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 x 10-15 would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate and production rate of the monitoring well.
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 x 10-15 would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate and production rate of the monitoring well.
Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after Hydraulic Fracturing
Kohl et al., August 2014
Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after Hydraulic Fracturing
Courtney A. Kolesar Kohl, Rosemary C. Capo, Brian W. Stewart, Andrew J. Wall, Karl T. Schroeder, Richard W. Hammack, George D. Guthrie (2014). Environmental Science & Technology, 9867-9873. 10.1021/es501099k
Abstract:
One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation.
One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation.
A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells
Reza Barati and Jenn-Tai Liang, August 2014
A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells
Reza Barati and Jenn-Tai Liang (2014). Journal of Applied Polymer Science, n/a-n/a. 10.1002/app.40735
Abstract:
Hydraulic fracturing has been used by the oil and gas industry as a way to boost hydrocarbon production since 1947. Recent advances in fracturing technologies, such as multistage fracturing in horizontal wells, are responsible for the latest hydrocarbon production boom in the US. Linear or crosslinked guars are the most commonly used fluids in traditional fracturing operations. The main functions of these fluids are to open/propagate the fractures and transport proppants into the fractures. Proppants are usually applied to form a thin layer between fracture faces to prop the fractures open at the end of the fracturing process. Chemical breakers are used to break the polymers at the end of the fracturing process so as to provide highly conductive fractures. Concerns over fracture conductivity damage by viscous fluids in ultra-tight formations found in unconventional reservoirs prompted the industry to develop an alternative fracturing fluid called “slickwater”. It consists mainly of water with a very low concentration of linear polymer. The low concentration polymer serves primarily to reduce the friction loss along the flow lines. Proppant-carrying capability of this type of fluids is still a subject of debate among industry experts. Constraints on local water availability and the potential for damage to formations have led the industry to develop other types of fracturing fluids such as viscoelastic surfactants and energized fluids. This article reviews both the traditional viscous fluids used in conventional hydraulic fracturing operations as well as the new family of fluids being developed for both traditional and unconventional reservoirs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40735.
Hydraulic fracturing has been used by the oil and gas industry as a way to boost hydrocarbon production since 1947. Recent advances in fracturing technologies, such as multistage fracturing in horizontal wells, are responsible for the latest hydrocarbon production boom in the US. Linear or crosslinked guars are the most commonly used fluids in traditional fracturing operations. The main functions of these fluids are to open/propagate the fractures and transport proppants into the fractures. Proppants are usually applied to form a thin layer between fracture faces to prop the fractures open at the end of the fracturing process. Chemical breakers are used to break the polymers at the end of the fracturing process so as to provide highly conductive fractures. Concerns over fracture conductivity damage by viscous fluids in ultra-tight formations found in unconventional reservoirs prompted the industry to develop an alternative fracturing fluid called “slickwater”. It consists mainly of water with a very low concentration of linear polymer. The low concentration polymer serves primarily to reduce the friction loss along the flow lines. Proppant-carrying capability of this type of fluids is still a subject of debate among industry experts. Constraints on local water availability and the potential for damage to formations have led the industry to develop other types of fracturing fluids such as viscoelastic surfactants and energized fluids. This article reviews both the traditional viscous fluids used in conventional hydraulic fracturing operations as well as the new family of fluids being developed for both traditional and unconventional reservoirs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40735.
Bromide: A Pressing Issue to Address in China’s Shale Gas Extraction
Shi et al., August 2014
Bromide: A Pressing Issue to Address in China’s Shale Gas Extraction
Mei Shi, Dongyan Huang, Gaowen Zhao, Ronghua Li, Jianzhong Zheng (2014). Environmental Science & Technology, . 10.1021/es502848p
Abstract:
Fracking the Debate: Frame Shifts and Boundary Work in Dutch Decision Making on Shale Gas
Tamara Metze, August 2014
Fracking the Debate: Frame Shifts and Boundary Work in Dutch Decision Making on Shale Gas
Tamara Metze (2014). Journal of Environmental Policy & Planning, 1-18. 10.1080/1523908X.2014.941462
Abstract:
The meaning of hydraulic fracturing for shale gas is contested worldwide: is it an energy game changer, a transition fuel, or a technology that poses severe environmental problems? In the Netherlands, a policy controversy developed in which fracturing was reframed from ‘business as usual’ to a potential environmental risk. This article theoretically and empirically describes this shift by arguing that the technology of hydraulic fracturing for shale gas is a boundary object that created a sphere of engagement for all sorts of actors. In this sphere, they negotiated a common but soft meaning of this technology. These negotiations consisted of frame contests. As part of those contests, the discursive strategies of framing and boundary work enabled opponents to create uncertainty about economic benefits and environmental impact. The shift in meaning transformed the issue from an economic one with standard governmental rules and regulations into a planning issue that needs more precaution.
The meaning of hydraulic fracturing for shale gas is contested worldwide: is it an energy game changer, a transition fuel, or a technology that poses severe environmental problems? In the Netherlands, a policy controversy developed in which fracturing was reframed from ‘business as usual’ to a potential environmental risk. This article theoretically and empirically describes this shift by arguing that the technology of hydraulic fracturing for shale gas is a boundary object that created a sphere of engagement for all sorts of actors. In this sphere, they negotiated a common but soft meaning of this technology. These negotiations consisted of frame contests. As part of those contests, the discursive strategies of framing and boundary work enabled opponents to create uncertainty about economic benefits and environmental impact. The shift in meaning transformed the issue from an economic one with standard governmental rules and regulations into a planning issue that needs more precaution.